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2NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
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SUMMARY
Detection of deviant stimuli is crucial to orient and adapt our behavior. Previous work shows that deviant
stimuli elicit phasic activation of the locus coeruleus (LC), which releases noradrenaline and controls central
arousal. However, it is unclear whether the detection of behaviorally relevant deviant stimuli selectively trig-
gers LC responses or other neuromodulatory systems (dopamine, serotonin, and acetylcholine).We combine
human functional MRI (fMRI) recordings optimized for brainstem imaging with pupillometry to perform a
mapping of deviant-related responses in subcortical structures. Participants have to detect deviant items
in a ‘‘local-global’’ paradigm that distinguishes between deviance based on the stimulus probability and
the sequence structure. fMRI responses to deviant stimuli are distributed in many cortical areas. Both types
of deviance elicit responses in the pupil, LC, and other neuromodulatory systems. Our results reveal that the
detection of task-relevant deviant items recruits the samemultiple subcortical systems across computation-
ally different types of deviance.
INTRODUCTION

Detecting deviant stimuli (i.e., stimuli that violate some regularity)

is crucial in a variety of processes, such as learning under uncer-

tainty,1 interacting in a flexible manner with the environment,2,3

and orienting behavior.4 In terms of mechanisms, it seems

clearly established that deviance detection triggers the phasic,

brain-wide release of noradrenaline from the locus coeruleus

(LC) located in the brainstem,4–8 especially when deviant items

are behaviorally relevant and correctly detected.9 This conclu-

sion is supportedmostly by studies in non-human animals, using

electrophysiological recordings of LC neurons during oddball

tasks in which frequent and rare stimuli are typically presented

in a sequence: the LC responds specifically to the rare (hence,

deviant) stimulus.5,9–12 Studies in humans provided converging

evidence: the functional MRI (fMRI) signal in the LC region

increased after deviant stimuli in oddball tasks.13,14

However, this bodyofwork leaves unclear the anatomical spec-

ificity of deviant-related responses: are they specific to the LC or

sharedacrossmultipleother subcortical structures, notablyneuro-

modulatory centers? The latter seems likely because deviance

detection overlaps with other notions such as novelty15,16 and un-

expectedness17,18 when deviance is defined by rareness, and
Ce
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salience19 is known to implicate noradrenaline but also other neu-

romodulators.20–28 For instance, dopamine encodes unexpected

stimuli in the form of reward prediction error24,25 as well as salient

stimuli related to novelty.20,22,28

Several pharmacological studies indicate that the deviance-

related response recruits a large set of neuromodulatory sys-

tems. Propranolol (a blocker of the noradrenergic b receptors)

decreased fMRI signals in cortical regions that respond to

deviant stimuli,29 but this effect is not specific to noradrenaline.

For instance, the P300 event-related potential (ERP) was used

as an indicator of LC activity supported by photoactivation

studies in rats,27 and it was found to be larger for deviant stim-

uli.30 However, this deviant-related P300 response was also

found to be reduced following the administration of either

scopolamine (a cholinergic antagonist) in rats31 and humans23

or clonidine (a noradrenaline a-receptor agonist) in humans.21

Pupillometry has also often been used as an indirect marker of

LC activity, and the existence of pupil responses to deviant stim-

uli is clearly established.32–35 However, a change in pupil size is

not necessarily due to a change in LC activity36 because other

subcortical nuclei such as the inferior colliculi37,38 and neuromo-

dulators are at play such as acetylcholine from the basal fore-

brain,39 and, more indirectly, serotonin from the raphe nucleus.40
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Figure 1. Task and example of anatomical

images

(A) The local-global paradigm. Patterns corre-

spond either to five identical tones (‘‘local stan-

dards,’’ xxxxx) or four identical tones and a

different one (‘‘local deviants,’’ xxxxY). During the

habituation phase, only one of the two patterns is

presented (called the global standard pattern).

During the test phase, this pattern is presented

80% of the time, and the other pattern (called the

global deviant pattern) is presented in 20% of the

cases. In total, participants are presented with four

different types of patterns: when the global stan-

dard (80%) is the local standard (xxxxx), the global

deviant (20%) is the local deviant (xxxxY); when the

global standard (80%) is the local deviant (xxxxY),

the global deviant (20%) is the local standard

(xxxxx).

(B) Example slice of the anatomical turbo spin echo

image used to delineate the LC (appearing in hy-

persignal, i.e., brighter) in each participant.
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Here, we propose to measure deviant-related responses not

only in the LCbut also in other structures of the brainstem, notably

in neuromodulatory centers. Direct, concurrent electrophysiolog-

ical recording of multiple neuromodulatory centers is very difficult

in non-human animals41 and is not an option in humans. In

contrast, fMRI can provide complete coverage of the brainstem

(and beyond), but brainstem fMRI is challenging due to the pres-

ence of larger physiological noise compared to cortex and the

very small size of the structures of interest, such as the LC.42 We

thus used fMRI methods optimized for the brainstem13,38 and

delineated the LC (noradrenaline), the substantia nigra/ventral

tegmental area (SN/VTA; dopamine), and the superior and inferior

colliculi (involved in pupil size and auditory processing37,43,44),

based on the participant’s anatomy. Most fMRI studies that

measured LC activity used anatomical atlases, but this method

is imprecisegiven its small size.45Wealso included for comparison

the activity of other neuromodulatory regions: the basal forebrain

(BF) for acetylcholine and the raphe nucleus (RN) for serotonin (us-

ing atlasesbecause theyaremoredifficult todelineate individually)

as well as other subcortical and cortical areas.

The studies mentioned so far used oddball (or similar)

tasks,5,9–11,13,14,29 in which deviant (oddball) items typically differ

greatly from the standard items in terms of physical properties

(e.g., pitch difference) and probability, making them very salient.

The deviant-related response may thus not reflect the detection

of the deviant item per se, but downstream processes related

to the salience or behavioral relevance of the deviant item.

Here, we used the local-global paradigm46 in which participants

counted deviant items, making these deviant items behaviorally

relevant (hence, salient). Interestingly, this paradigm differenti-

ates between two types of deviant items: one based on the stim-

ulus probability (just as in classical oddball tasks), which can be
2 Cell Reports 42, 113405, November 28, 2023
detected by simple mechanisms such as

stimulus-specific adaptation43,44; and

another based on the structure of the

sequence, which requires more elaborate

processes to be detected47 such as pre-
dictive coding48 and even awareness.49,50 In other words, this

paradigm dissociates the notion of task-relevant deviant items

from a specific type of deviance.We investigated whether the re-

sponses to these task-relevant deviant items are similar or

different between these two types of deviant items.

To anticipate our result, we found that both types of deviant

items elicit widespread fMRI responses in subcortical and

cortical structures, which may correspond to the broadcasting

of a task-related, salient event downstream of potentially

different deviance detection systems.

RESULTS

Distinguishing between different types of deviant items
The local-global paradigm presents sequences of stimuli that

exhibit two nested levels of structure. At the local level, stimuli

form patterns of four sounds with a fifth one that is either iden-

tical, forming a locally standard pattern xxxxx, or different, form-

ing a locally deviant pattern xxxxY (Figure 1A). The global level is

characterized by the succession of patterns separated by short

pauses: in each block of the task, one pattern is frequent (80% of

patterns) while the other is rare (20%). The local and global prop-

erties, as well as sound identity, were crossed in a full factorial

2 3 2 3 2 design. In each block, participants were first familiar-

ized with the frequent pattern only (which defines the block iden-

tity: xxxxx block or xxxxY block) and then presented with a few

rare patterns (called global deviants) interleaved among the

frequent ones. Participants listened to these patterns and were

instructed to count the number of global deviant patterns.

Twenty participants performed the task in the scanner where

they had to count the number of rare patterns for a total of four

sessions.



Figure 2. Epoch-based analyses of the four

stimuli for pupil and LC data

(A) Pupil size (Z score) evoked by the four types of

patterns.

(B) Time course of fMRI activity (Z score) in the LC

evoked by the four types of pattern. Error shading

is standard error (n = 24). Black dashed lines

indicate significant clusters for the effect of rare

patterns (non-parametric cluster-level paired t test

for global effect, pFWE < 0.05).
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Note that there is a key difference between the two types of

global deviants. A rare xxxxY can be detected among frequent

xxxxx based on low-level processes that operate on the proba-

bility of the sounds themselves in a sequence, like stimulus-spe-

cific adaptation, because the Y sound is extremely rare (occur-

ring only with probability 0.2 3 1/5 = 0.04). In contrast, such

low-level processes do not suffice to detect a rare xxxxx among

frequent xxxxY because with x being the dominant sound

(occurring with probability 0.8 3 1 + 0.2 3 4/5 = 0.96), xxxxY

stands out more than xxxxx based on sound probability alone.

A mechanism for the detection of a rare xxxxx must operate at

a higher level, namely the sequence of sound patterns. The

local-global paradigm thus allows a distinction between different

computations for deviance detection, operating on the stimulus

probability and sequence structure, respectively, and possibly

different mechanisms, such as bottom-up and top-down pro-

cesses (see discussion).

Robust responses to global deviants in the pupil-linked
arousal system
Pupil size is controlled by the autonomic nervous system. It pro-

vides a marker of arousal that is known to transiently increase

when deviant stimuli are detected.51 To characterize its

response to global deviance, we performed a baseline-cor-

rected, epoch-based analysis to isolate the phasic evoked

response (see STAR Methods). This analysis included only a

subset of 13 participants who have a large-enough number of tri-

als after artifact rejection (see STAR Methods). Pupil size ex-

hibited a clear response to global deviants, with larger pupil

size for rare patterns compared to frequent patterns (maximum

t value [tmax] = 6.85, maximum p value [pmax] < 0.001, maximum

Cohen’s d [dmax] = 1.90, p value for clusters with family-wise er-

ror [cluster pFWE] < 0.001) (Figure 2A). Note that the response

was similar between the two types of global deviants (there

was no significant effect of local deviance, tmax = 1.95, pmax =

0.075; or interaction between local and global deviances,

tmax = 1.35, pmax = 0.201).

Global deviance transiently increases LC activity
Having established that both types of global deviants in the local-

global paradigm elicit strong transient activation of the pupil-

linked arousal system, we next investigated their effects in our
Cell
primary region of interest (ROI), namely

the LC. As for the pupil, we used epoch-

based analyses. We extracted time series

from the LC, removed several confounds
(see STARMethods), epoched the signal (from�2 to 12 s around

the onset of patterns), and corrected for the baseline (subtracting

the signal from �2 to 0 s). This analysis allowed us to track the

fMRI activity of the LC in response to deviant stimuli with no

assumption about the shape of the hemodynamic response,

which may be different in subcortical structures compared to

the cortex where the canonical hemodynamic responses have

been defined.52 In addition, as for the pupil size analyses, the

baseline correction removes the autocorrelation that may exist

in the signal before and after the pattern onset and captures

the change in activity evoked by the pattern. Thus, this analysis

captures the phasic activity of the LC and removes the tonic

activity.

The LC activity showed amain effect of global deviance (tmax =

3.04, pmax = 0.006, dmax = 0.62, cluster pFWE = 0.024) with a

greater increase in fMRI activity for rare patterns compared to

frequent patterns (Figure 2B). No cluster was identified for either

the local effect or for the interaction between the local and global

deviance, suggesting that responses were similar between the

two types of global deviants.

Mapping of deviance-related responses across regions
of interest
We repeated the epoch-based analysis to quantify deviant-

related responses in several other brain structures sorted into

three categories. (1) The other neuromodulator nuclei included

the SN/VTA (individually delineated, see STARMethods and Fig-

ure S5), the BF, and the RN (based on anatomical atlases). (2)

The other subcortical structures included the superior colliculus

(SC; involved in orienting responses), the inferior colliculus (IC;

involved in auditory processing), and the hippocampus (involved

in sequence processing). (3) Cortical structures, where the fMRI

signal-to-noise ratio is higher than in subcortical structures,

included the superior temporal gyrus (previously identified to

respond to rare patterns with the same task, see Bekinschtein

et al.46), the primary auditory and visual cortices (corresponding

to the calcarine and the superior temporal sulcus in Destrieux’s

parcellation53), and the rectus gyrus in the medial prefrontal cor-

tex (which is part of the default mode network and thus not

expected to respond to rare patterns (see Figure S1 for the effect

of rare patterns in a full parcellation of the brain using Destrieux’s

parcellation).
Reports 42, 113405, November 28, 2023 3



Figure 3. Time course of fMRI activity (Z

score) evoked by the four types of patterns

The first column shows neuromodulator nuclei, the

second column other subcortical regions of inter-

est (ROIs), and the third column cortical ROIs.

Asterisks indicate ROI defined in native space by

manual delineation. Error shading is standard error

(n = 24). Bold black lines indicate significant clus-

ters for the effect of rare patterns (global effect),

and bold gray lines indicate clusters for the inter-

action between the global effect and the local ef-

fect (non-parametric cluster-level paired t test,

pFWE < 0.05). Non-bold lines indicate time points

with significant differences (non-parametric clus-

ter-level paired t test, p < 0.05 but cluster

pFWE > 0.05).
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Figure 3 shows the four types of stimuli for each ROI, and Ta-

ble 1 summarizes the corresponding statistics (see Figure S2 for

a similar figure gathering the two types of rare and frequent pat-

terns). All neuromodulator nuclei showed an increase in fMRI ac-

tivity for rare patterns compared to frequent patterns (which re-

mained significant when corrected for multiple comparisons

across time, except in the BF). The dopaminergic SN/VTA is

the structure that elicits the largest response. For the LC, the

maximum effect size was smaller than in the SN/VTA and the

RN, probably due to the smaller size of the LC ROI. The ventral

medial prefrontal cortex and the hippocampus showed the

reverse pattern later in the time window: fMRI activity in these re-

gions was higher for frequent stimuli compared to rare stimuli.

The other structures (cortical and subcortical) all exhibited a

larger response for rare patterns compared to frequent patterns.

Larger responses were found in cortical ROIs than in subcortical

areas, potentially due to their different sizes and signal-to-noise

ratios (SNRs). The shape of the response also differed between

cortical and subcortical regions: cortical regions had a more ca-

nonical response with a clear peak while several subcortical re-

gions exhibited a kind of plateau (Figure 3). Note that caution

should prevail when comparing these different structures. First,

cortical and subcortical structures differ in terms of SNR. Sec-

ond, within subcortical structures, four have been defined in
4 Cell Reports 42, 113405, November 28, 2023
native space and others using atlases

render the latest less neuroanatomically

accurate.

No ROI showed a main effect for local

deviance. Interaction between the local

and global effect was significant only for

cortical areas involved in auditory pro-

cessing, namely the superior temporal

gyrus (tmax = 6.08, pmax < 0.001, dmax =

1.24, cluster pFWE < 0.001) and the

superior temporal sulcus (tmax = 3.84,

pmax < 0.001, dmax = 0.78, cluster pFWE =

0.045). In these regions, the signal time

courses (Figure 3) indicate that the inter-

action originates from the fact that the

rare xxxxY patterns (the stimulus-proba-

bility deviant) elicited a higher and earlier
response than the rare xxxxx patterns (the structure deviant).

To confirm this hypothesis, we performed a follow-up analysis

to estimate the difference in response peaks between condi-

tions. The superior temporal gyrus showed a significant differ-

ence in the peak of the response, which was significantly earlier

for rare xxxxY than rare xxxxx patterns (estimated difference

1.422 s; 95% confidence interval [CI] 0.888, 2.004). A similar

trend was observed in the superior temporal sulcus (mean

0.672, 95% CI �0.102, 1.742).

To rule out that the detection of global deviant-related re-

sponses depends on the specifics of our analysis approach,

we compared frequent and rare patterns across brain structures

using finite impulse response (FIR) analyses and general linear

model (GLM) analyses (see supplemental information). Epoch-

based analyses do not model the potential superposition of ef-

fects of the current and previous patterns in the time window

of interest. In contrast, FIR and GLM analyses are designed to

model this superposition and differ in their assumptions about

the hemodynamic response (which is unconstrained or assumed

to be canonical, respectively). The epoch-based analysis also

contains a baseline correction that aims to suppress endoge-

nous fluctuations in the signal—therefore focusing on phasic ac-

tivity—which are ignored by FIR and GLM analyses. These three

analyses are thus complementary.



Table 1. Statistics for the global effect for all ROIs

Neuromodulation-

related nuclei

Other

subcortical

nuclei Cortical areas

LC superior colliculi superior temporal

gyrus

tmax = 3.04 tmax = 4.24 tmax = 8.52

pmax = 0.006 pmax < 0.001 pmax < 0.001

dmax = 0.62 dmax = 0.86 dmax = 1.74

cluster pFWE = 0.023 cluster pFWE = 0.005 cluster pFWE < 0.001

SN/VTA inferior colliculi calcarine sulcus

tmax = 5.52 tmax = 3.46 tmax = 6.31

pmax < 0.001 pmax = 0.002 pmax < 0.001

dmax = 1.13 dmax = 0.71 dmax = 1.29

cluster pFWE < 0.001 cluster pFWE = 0.004 cluster pFWE < 0.001

BF hippocampus superior temporal

sulcus

tmax = 2.35 tmax = �4.69 tmax = 5.53

pmax = 0.027 pmax < 0.001 pmax < 0.001

dmax = 0.48 dmax = �0.96 dmax = 1.12

cluster pFWE = 0.159 cluster pFWE = 0.022 cluster pFWE < 0.001

RN – rectus gyrus

tmax = 4.70 – tmax = �5.05

pmax < 0.001 – pmax < 0.001

dmax = 0.96 – dmax = �1.03

cluster pFWE = 0.002 – cluster pFWE = 0.006

Statistical measures include non-parametric cluster-level paired t-tests,

maximum t values, maximum p values, maximum Cohen’s d, and

p values for clusters with FWE correction.
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Overall, results were qualitatively consistent across the three

types of analyses, suggesting that the global effect does not

depend on the type of analyses we performed. The only notable

qualitative differences concern the hippocampus and the ventral

medial prefrontal cortex where the late negative effect of global

deviance found in epoch-based analyses (and FIR analyses)

differed from the positive (non-significant) effect found with

GLM analyses, probably because the late difference is not well

captured by the canonical response function.

Anatomical specificity of the response to global deviants
around the LC region
The global deviant-related response is very much distributed in

cortical and subcortical structures, raising the concern that the

effect found in the LC may not be specific to this region but

instead may be widespread within the pons. To test for the

anatomical specificity of global deviance within the pons, we

repeated the same epoch-based analyses but after shifting the

ROI corresponding to the LC in space. In the native space of

each participants, we shifted this ROI toward the front of the

head (from 1 to 5 voxels, i.e., +2 to +10 mm leading to five new

ROIs, see Figure 4B) and toward the back of the head, which falls

in the fourth ventricle (from 1 to 3 voxels, i.e.,�2 to�6mm, lead-

ing to three new ROIs, see Figure 4B). This axis is more relevant

for the shift of the LC ROI than shifting toward left or right
because the LC is a bilateral structure, and more relevant than

toward the spinal cord or the midbrain because the LC is elon-

gated along this axis. For each shift of the ROI, we extracted

the corresponding time series and performed epoch-based

analysis for global deviant and global standards stimuli.

Figure 4A shows the time course of the difference in fMRI

signals between rare patterns and frequent patterns for different

shifts of the LC ROI (see Figure S5 for the same analysis for the

xxxxY pattern and the rare xxxxx pattern separately). The effect

of global deviance overall decreased as larger shifts were

applied: the maximum difference between rare and frequent

pattern changed from 0.057 (SD = 0.020) originally to 0.051

(SD = 0.020), 0.051 (SD = 0.022), 0.042 (SD = 0.021), 0.031

(SD = 0.019), and 0.032 (SD = 0.020) in the anterior direction

(+2 mm to +10 mm shifts) and to 0.041 (SD = 0.022), 0.043

(SD = 0.018), and 0.036 (SD = 0.020) in the posterior direction

(�2 mm to �6 mm shift). Only the signal for the actual LC

(no shift) and the signal for the +2 mm and �4 mm shift showed

a significant effect of global deviance (no shift: pFWE =

0.023; +2 mm shift: pFWE = 0.006; �4 mm shift: pFWE = 0.010).

Direct comparisons of the global deviance in shifted and un-

shifted data showed time points with significant differences

(p < 0.05, one-sided test, for shifts of +8 and�6mm, but the cor-

responding cluster pFWE remained >0.05).

We also performed GLM statistical mapping analysis for the

effect of global deviant stimuli. Significant voxels in the brain-

stem showed some overlap with the LC atlas (Figure 4C). These

results support an anatomical specificity of the effect of global

deviance in the LC region compared to its vicinity, but without

sharp boundaries.

Comparison of LC activity in native space and atlas
The anatomical specificity of the effect of global deviance in the

LC region can also be assessed by comparing the results ob-

tained with anatomical delineation of the LC in each subject (in

native space) to the expectedly less accurate ones obtained

from a probabilistic atlas of the LC (in standardized space, see

Figure 5). We extracted fMRI time series based on an atlas of

the LC (see STARMethods) that identified 10 voxels in standard-

ized space. Note that our delineation in native space identified

only a mean of 5.54 voxels for the LC (minimum = 4 voxels,

maximum = 9 voxels across participants). A comparison of the

two approaches revealed that the voxels identified in native

space were systematically in the more anterior part of the atlas

of the LC and thus closer to the midbrain, which is consistent

with previous studies.55 Therefore, to allow a fair comparison

with the individual delineations (Figure 2), we also performed a

second analysis matched in voxel number (using 6 voxels in

the atlas that were the most anterior, see Figure 5). The two

atlas-based analyses showed significant effects of global devi-

ance (full atlas: tmax = 4.15, pmax < 0.001, dmax = 0.85, cluster

pFWE = 0.002; atlas with 6 voxels: tmax = 4.16, pmax < 0.001,

dmax = 0.85, cluster pFWE < 0.001). No significant cluster was

identified for the effect of local deviance, but the interaction be-

tween local deviance and global deviance was significant in both

analyses (full atlas: tmax = 4.15, pmax < 0.001, dmax = 0.85, cluster

pFWE = 0.025; atlas with 6 voxels: tmax = 2.93, pmax = 0.009,

dmax = 0.66, cluster pFWE = 0.022). In contrast to the analysis
Cell Reports 42, 113405, November 28, 2023 5



Figure 4. Anatomical specificity around the

LC in the pons

(A) Time course of the effect of global deviance

(difference in Z-scored fMRI activity between rare

and frequent patterns) for different shifts of the

anatomically defined LC ROI in millimeters (2 mm

corresponds to 1 voxel). Left panel refers to shifts

toward the anterior direction of the pons. Right

panel refers to shifts toward the posterior direction

of the pons. Black line refers to the original, non-

shifted LC ROI. Colored horizontal dashed lines

refer to identified clusters for the difference be-

tween the corresponding color and the black line.

None of them remains significant after correction

for multiple comparisons (non-parametric cluster-

level paired t test for one-sided tests).

(B) Example location of the LC in the native space

of one participant (in white) and the same ROI

shifted along the anteroposterior axis (gradients

from blue to red).

(C) Statistical Z-score map for the effect of global

deviant stimuli, thresholded at Z = 2.8 (corre-

sponding to p = 0.005). White voxels correspond to

the LC atlas from Keren et al.54 Mean standard

error is mean standard error of all shifts (n = 24).
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performed after individual delineation of the LC, a region corre-

sponding to the atlas exhibits a response to global deviance

that ismostly driven by stimulus probability (rare xxxxY patterns).

This is in line with the fact that the response to the rare xxxxY is

largely shared by voxels in the vicinity of the individually anatom-

ically defined LC whereas the response to the rare xxxxx pat-

terns is not, but instead is more specific to the LC itself

(Figures S4A and S4B). If the atlas corresponds to voxels that

are not exactly centered on the true individually and anatomically

defined LC of each participant, but instead on its vicinity, the

response to rare xxxxx patterns is expected to be reduced and

even undetected.

Functional connectivity of subcortical regions
To explore how the different subcortical structures relate to one

another, we performed a correlation analysis of intrinsic signals

among subcortical regions. We used the residual time series (af-

ter removing the linear effect of external common causes—the

stimuli—and potential confounds: movement parameters, signal

in the 4th ventricle, and physiological signals) (Figure 6A). The LC

signals correlated significantly with the other neuromodulatory

centers (RN, SN/VTA; with the notable exception of the BF)

and with the IC, which is known to be involved in auditory devi-

ance detection.43 SN/VTA and RN were the regions that corre-

lated the most with other subcortical structures.

Correlations among subcortical structures are likely to be

shaped by subcortical connections as well as afferent cortical

connections. In a complementary analysis, we analyzed the

pattern of correlations between cortical and subcortical signals.

We measured the correlations of intrinsic signals between each

subcortical structure and each cortical region that has substan-

tial coverage in our field of view (>50% of the region, see supple-

mental information).We then used the cortical-subcortical corre-

lation matrix to cluster hierarchically the subcortical structures

(Figure 6B). The cortical correlation profile of the BF appeared
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markedly different from the other subcortical regions and formed

a separated cluster. Within the second cluster, the two regions of

the tectal system (SC and IC) and the three remaining neuromo-

dulatory centers (LC, SN, and RN) were grouped together

respectively. The subcortico-subcortical correlations (Figure 6)

and the distance matrix between subcortical regions based on

their cortical correlations (Figure 6) did not differ significantly be-

tween conditions (rare xxxxx blocs vs. rare xxxxY, all p > 0.14,

except for the distance between the SC and the IC for which

p = 0.03 without Bonferroni correction).

DISCUSSION

We performed a systematic response mapping in subcortical

structures using fMRI coupled with pupillometry in a task

that involves two types of deviants that requires computations

based on the stimulus probability and sequence structure,

respectively. Global deviance evoked transient LC responses,

which was our primary ROI because it is well established that

the central noradrenergic system vigorously responds to

deviant stimuli.5,9,10 Similar responses were found in other

neuromodulatory centers (the SN/VTA and the RN), other

subcortical nuclei (the SC and IC), and cortical regions (the

anterior and posterior superior temporal gyri, the primary audi-

tory and visual cortices). Correlations of intrinsic signals re-

vealed the functional similarity of the RN, SN/VTA, and LC.

Local and global deviances interacted in cortical responses

related to auditory processing where global deviants elicited

stronger and earlier responses when corresponding to a stim-

ulus-probability deviant than a structure deviant. In contrast,

subcortical structures (and the visual cortex) exhibited similar

responses to both types of global deviants. This response to

both types of global deviants showed some anatomical spec-

ificity to the LC region within the pons because it decreased

when moving away from the subject-specific, anatomically



Figure 5. Anatomical specificity assessed

with a normalized atlas of the LC

Time course of fMRI activity (Z score) in the LC

evoked by the four types of patterns based on an

anatomical atlas (left) and a selection of 6 voxels in

the most anterior part of this atlas (right). Error

shading is standard error (n = 24). Black and gray

dashed lines indicate significant clusters for the

global effect and the interaction between global and

local effects, non-parametric cluster-level paired t

test, respectively (pFWE < 0.05).
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defined LC region and became driven by stimulus-probability

deviants when using a probabilistic, normalized atlas of the

LC. Pupil size exhibited similar responses to both types of

global deviants.

The two types of deviant items in the local-global paradigm act

via different brain circuits, according to previous electrophysio-

logical studies. Local deviance (xxxxY vs. xxxxx) elicits an early

response in sensory cortices, whereas global deviance (rare vs.

frequent patterns) elicits a later response that is distributed

across brain areas and reaches the frontal lobe in both hu-

mans46,56–58 and macaques.59 The effects of local deviance

and global deviance are propagated across cortical areas

through different frequency bands, the gamma band and beta-

alpha band, respectively56,59 which are distinct functional

markers of bottom-up and top-down processes.60–62 Our results

focused on a comparison of the two types of global deviance and

showed that rare patterns elicited stronger and earlier responses

when they corresponded to the xxxxY patterns (stimulus-proba-

bility deviant) than to the xxxxx pattern (structure deviant) in re-

gions of the temporal lobe related to auditory processing,

consistent with the idea that the detection of a rare xxxxx pattern

recruits top-down processes (unfortunately, our brainstem-opti-

mized partial brain coverage excludedmost of the prefrontal cor-

tex). We note that the distinction between global deviance based

on stimulus probability and sequence structure is not tested in

several previous studies,46,51,56 leaving unclear whether the

global effect analyzed in those studies is driven by both types

of global deviants or just one.

In subcortical structures, in the pupil, and in the primary visual

cortex, responses to both types of rare patterns were largely

similar, in contrast to the temporal cortex. This similarity could

indicate that they belong to a common final path, downstream

of different circuits that detect different types of deviant items,

which broadcasts the occurrence of a task-relevant, salient

event. Subcortical structures such as the LC and the SN/VTA

are known to be generally responsive to salient events, even

when this salience is not due to the rareness of the event.26–28,41

Determining the source and target of neural activity in those cor-

tico-subcortical networks would be valuable but would require

better time-resolved techniques than fMRI, such as electrophys-

iology, which is technically difficult to obtain. The LC in particular

may play a central role in arousing the brain in response to task-
Cell
relevant deviant stimuli. Studies in ro-

dents and primates showed that afferent

LC inputs mainly come from subcortical
nuclei and that in cortex, only the prefrontal region directly pro-

jects to the LC.63,64 Subcortical structures seem to be suitable

candidates to signal the presence of rare xxxxY patterns but,

as discussed above, they seem to lack the mechanisms to

detect rare xxxxx patterns. The detection of the latter seems to

rely on higher-order regions such as the prefrontal cortex, which

could directly signal those types of deviants to the LC.

In the local-global task, the increase in central arousal that fol-

lows rare patterns depends on the participants’ state of con-

sciousness and their awareness of a sequence structure. Previ-

ous studies showed that the global deviance detection vanishes

in patients with disorders of consciousness,65 when healthy sub-

jects fall asleep,50 and when they are not aware of (or do not pay

attention to) the task structure.51 Interestingly, the effect of

global deviance (notably rare xxxxx patterns) is more difficult

to detect, and with a reduced extent, in brain recordings of ma-

caque monkeys,59,66–68 for which global deviants are not behav-

iorally relevant and thus potentially not attended, compared to

healthy human participants who are told about the existence of

global deviants and often asked to count them.46,50,51,56,57

Here, we also asked participants to count the global deviants,

which probably enhanced their detection and the associated

brain responses.

It is important to note that our design cannot distinguish be-

tween deviance detection per se (e.g.,. expectation violation

signal) and the consequences of deviance detection (e.g., the

identification of a task-relevant event). In addition, our fMRI

data do not indicate where the deviance detection is computed

in the brain for the two types of deviants. We can only specu-

late that expectation violation in some regions may serve to

detect deviant items, possibly based on different circuits for

the two deviant types, and this detection may be communi-

cated to (and enhanced by) some other regions due to its

task relevance.

LC responses are known to depend on attentional effects.

During active oddball tasks, LC neurons exhibited a higher

response when monkeys correctly (vs. incorrectly) detected

rare stimuli.9 More generally, there are state-dependent changes

in tonic LC activity: higher tonic activity coincides with periods

when monkeys have more motor activity that is irrelevant to

the task; in contrast, periods of drowsiness, immobility, and

eye closure reduce LC activity.9 Thus, phasic LC responses to
Reports 42, 113405, November 28, 2023 7
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tical regions

(A) Correlation matrix of intrinsic signals across

subcortical regions. Asterisks indicate Bonferroni-

corrected significant Pearson correlations

(*p < 0.05, **p < 0.005, ***p < 0.0005; a dot in-

dicates p < 0.05 uncorrected).

(B) Hierarchical clustering of subcortical regions

based on their patterns of intrinsic correlations

with cortical regions (see Figure S6 for the corre-

sponding distance matrix).
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deviant stimuli may occur for a particular level of tonic LC activ-

ity, when the subject is sufficiently focused (and not toomuch) on

the current task.69,70 In this study, we reported baseline-cor-

rected analyses (epoch-based analyses) to focus on the phasic

component and suppress the additive effect of tonic fluctuations

(but ignoring potential non-linear effects previously reported in

spiking activity of LC neurons69 and in pupil size71). In contrast,

the non-baseline-corrected analyses (see FIR andGLManalyses

in supplemental information) also focus on the phasic compo-

nent but ignore the tonic fluctuations (the ones above 1/128 Hz

that remain after preprocessing). We note that our results are

consistent across baseline and non-baseline-corrected ana-

lyses, which suggests in retrospect that the detection of rare pat-

terns that manifests itself in an increased arousal of various brain

structures was not masked by fast (above 1/128 Hz) fluctuations

of tonic arousal levels (which would have penalized the non-

baseline-corrected analyses).

The current work will, in addition, be of methodological inter-

est to researchers interested in the measure of LC activity with

fMRI and more indirectly with pupillometry. The possibility to

estimate the LC activity with fMRI is a contentious issue; doing

so requires dedicated methods such as subject-specific

anatomical delineation of the LC (see, e.g., technical com-

ments45,72). We report a comparison of results obtained with

a subject-specific delineation and a probabilistic, normalized

anatomical atlas of the LC. Although both analyses showed

an effect of global deviant patterns, this effect interacted with

the local pattern type and was actually driven by the rare xxxxY

pattern when using the atlas (there is no such interaction when

using subject-specific delineation or pupil size). Given what is

observed in other brain regions and the pupil, and previous

work on the LC, we assume that the LC responds to both types

of global deviants and thus that the results obtained with sub-

ject-specific delineation are closer to the ground truth. In other

words, using a subject-specific delineation (rather than an

atlas) seems necessary in fMRI studies of the LC, despite being

time and resource consuming. We also propose that the effect

of the rare xxxxx patterns could be a quality check of correct

identification of the LC region, possibly in a trimmed-down
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version of the local-global paradigm

that only presents rare xxxxx among

frequent xxxxY. A response to rare

xxxxx patterns seems a more stringent

test than a response to rare xxxxY pat-

terns (as in oddball tasks) because we
found responses to rare xxxxY patterns, but not rare xxxxx pat-

terns, non-specifically across the pons (see Figure S4).

Our results are also informative concerning the use of periph-

eral arousal (measured as non-luminance-based change in pupil

size) as an approximation of central arousal (more precisely, LC

activity). The sensitivity of pupil size to LC activity is demon-

strated on the basis of direct LC recording in non-human ani-

mals.39,73 However, those studies also demonstrated that this

correlation is not specific to LC activity but is also related to cen-

tral acetylcholine39 and serotonin40 levels. A consequence of this

lack of specificity is that changes in pupil dilation may not reflect

changes in LC activity.36 Here we found an effect of the global

deviance, without interaction with the local deviance, in both pu-

pil size and fMRI activity in the LC region, suggesting that periph-

eral and central arousals are similar. Note that those similar ef-

fects could arise from the LC influencing pupil size (e.g., via

the intermediolateral cell column, the Edinger-Westphal nucleus,

or the SC notably37) or from a common input (e.g., the nucleus

gigantocellularis that activates both the LC and the autonomic

system4). Those two hypotheses would have been supported

by correlated responses to global deviance in the pupil and the

LC region, but we did not find such a relationship, which was sig-

nificant only between pupil size and fMRI activity in the SN/VTA.

This null result in the LC is not evidence for the absence of a rela-

tionship, notably because our analyses were limited by the small

number of included trials and participants. The result found for

the SN/VTA (which replicates the one from de Gee et al.38 in a

different task) could simply be due to better data quality, this re-

gion being much larger than the LC (here, all effects were stron-

ger in the SN/VTA than in the LC). The SN/VTA has no direct

connection to the systems controlling pupil size,37 but it receives

direct input from the LC4; the effect found in the SN/VTA could

thus be due to an effect in the LC that our data failed to detect.

Overall, the current study showed deviant-related responses

to an effect of deviance that generalize across two types (stim-

ulus probability and sequence structure) in many subcortical re-

gions, including neuromodulatory centers, and several cortical

regions. Our results are consistent with the idea that the detec-

tion of task-relevant deviant sound patterns triggers the arousal
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system through the activity of the LC. The LC likely gets inputs

signaling the occurrence of a task-relevant event from higher re-

gions (e.g., frontal areas) and in turn broadcasts surprise signals

across the entire brain. Future work with better temporal resolu-

tion will need to determine the direction of neural signals be-

tween the interconnected neuromodulatory centers, other

subcortical structures, and cortical areas that subtend a hierar-

chy of deviance mechanisms.

Limitations of the study
The present study has several limitations. Because of the task

structure, the number of global deviant patterns is necessarily

small (88 patterns per type of global deviant per participant),

therefore analyses comparing signals between the two types

of deviant may suffer from a lack of statistical power. The number

of voxels corresponding to the anatomically delineated LC is also

small, and furthermore different across participants (from 4 to 9

voxels in fMRI data), potentially contributing substantial be-

tween-subject variability. The detection of global deviants is

confounded by their task relevance, and future studies should

disentangle these two aspects. Finally, we did not perform

sex- and gender-based analyses.
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Meyniel (florent.meyniel@cea.fr).

Materials availability
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Data and code availability
d Behavioral, physiological, pupil data are available on https://osf.io/td5kp/. MRI data are available on https://openneuro.org/

datasets/ds004808.

d Original code is available on https://zenodo.org/record/8414347.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Twenty four participants (10 women as per sex assigned at birth; gender was not collected) recruited in the general population and

aged between 20 and 36 years (mean = 27.04, SD = 4.69) were enrolled in the experiment. Ancestry, race and ethnicity were not

collected. This protocol was approved by a national ethics committee (Comité de Protection des Personnes Ile de France 3, approval

#2018-A03195-50). Participants gave their written informed consent prior to participating in the study. Participants receive monetary

compensation for their participation (80V for 2 h). They were right-handed based on self-report and had normal or corrected-to-

normal vision.

METHOD DETAILS

Stimuli and task
The task included 4 sessions of 10 min each and was run using Octave (version 6.1.0) and the Psychtoolbox74 in the scanner. It was

the same task as used in.46 Stimuli are short auditory tones composed by 3 sinusoidal tones resulting in either a low-pitched sound

(stimulus A composed by 350, 700, and 1400 Hz sinusoides) or a high-pitched sound (stimulus B: 500 Hz, 1000 Hz, and 2000 Hz
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sinusoides). Stimuli were presented in a sequence of patterns separated by pauses. A pattern consisted in four identical tones and a

fifth that could be either the same (xxxxx; within-pattern standard, i.e., local standard) or different (xxxxY; within-pattern deviant, i.e.,

local deviant). The assignment of tones and patterns were counterbalanced across blocks (block of AAAAA and AAAAB vs. BBBBB

and BBBBA). The duration of each tone was 50ms and pattern duration was 650 ms with an inter-pattern interval of 1.500ms. During

the habituation phase, participants were first exposed to only one pattern. During the test phase, participants were presented with

either the same pattern as during habituation in 80% of the cases (frequent pattern) or with the other pattern in 20% of the cases (rare

pattern). Figure 1A depicts a schematic representation of the task.

Each session included 2 blocks in counterbalanced order: one where the habituation pattern was a local standard pattern (denoted

xxxxx block) and one where it was the local deviant pattern (denoted xxxxY block). One block included 135 patterns (22 rare patterns

and 113 frequent patterns including 25 ones for the habituation phase). During the task, participants had to listen to the pattern and

count the number of rare patterns.

MRI data collection and preprocessing
MRI data were acquired on a 3 Tesla scanner (Siemens, Prisma) with a 64-channel coil. In order to maximize the signal-to-noise ratio

in LC, we acquired partial-brain functional echo planar images (EPI) images centered on the brainstem and oriented perpendicular to

the floor of the fourth ventricle (and thus, main axis of the LC). We used the following parameters: TR = 1.25 s, TE = 30ms, flip angle =

65�, 28 interleaved slices with a slice thickness of 3 mm and a multiband factor of 2. In-plane resolution was 2.0 3 2.0 mm. The en-

coding phase direction was from anterior to posterior. To estimate distortions, we acquired two volumes with opposite phase encod-

ing directions. One volume was in the anterior to posterior direction (AP) and the other was in the other direction (PA), with TR =

4,800 ms, TE = 54 ms.

Two partial-brain Turbo Spin Echo (TSE) structural images, sometimes referred to as neuromelanin-sensitive75 were acquired: one

centered on the LC38 and others centered on the SN/VTA. Images were acquired with an in-plane resolution of 0.7 3 0.7 mm and

reconstructed at 0.35x0.35 (TR = 675 ms, TE = 12 ms). We acquired 14 slices per TSE, slice thickness was 2 mm, oriented perpen-

dicular to the floor of the fourth ventricle. We also acquired a whole-brain structural T1 image with anMPRAGE sequence for anatom-

ical co-registration and the delineation of the IC and the SC with in-plane resolution of 13 1 mm and a slice thickness of 1 mm (TR =

2,300 ms, TE = 2.98 ms).

All preprocessing steps relied on SPM12 (Wellcome Trust Center for Neuroimaging, University College London) except the TOPUP

correction that relied on FSL, using the python/FSL and python/SPM interfaces afforded by Nipype (https://doi.org/10.5281/zenodo.

596855). Slice-timing correction was referenced to the middle of each TR. Volumes were realigned onto the first volume of each ses-

sion, and then onto the first volume of the first session. We also performed a TOPUP correction that estimates the susceptibility field

using the AP/PA volumes and unwraps EPI images. Different coregistrations were made for different types of analyses. For those in

native space analyses, EPI images were coregistered with the TSE images (either with the one centered on the LC to extract LC data,

or the one centered on the SN/VTA to extract SN/VTA data) or with the T1 image (to extract IC and SC data). For normalized space

analyses, the T1 image was first coregistered to the TSE image before normalization performed using the standard SPM template in

the Montreal Neurological Institute (MNI) space.

Physiological data collection and preprocessing
During the task, we recorded cardiac rhythm with a pulse oximeter and respiration with a belt. We modeled physiological signals us-

ing FSL PNM76 that creates physiological regressors for each slice of each volume. We selected estimates for the reference slice

used in the slice-timing correction. We defined orders for each component as follows: 4 for the cardiac component, 3 for the respi-

ratory component, and 1 for the interaction between the two. The total number of regressors modeling physiological signals was 18.

One participant had no physiological recordings due to technical issues.

Pupil size data collection and preprocessing
Pupil size was also recorded during scanning using an MRI-compatible EyeLink 1000 system. On raw data we performed the

following preprocessing steps: (1) add a margin of 50 ms before and after the blinks detected by the EyeLink system, (2) interpolate

the signal linearly within each blink, (3) low-pass filter (5 Hz) the data, (4) epoch the data within �0.5 to 3 s relative to each stimulus

onset, (5) exclude epochs with a total blink duration exceeding 20% of the data. It is difficult to measure pupil size in the MRI scanner

due to the distance between the eyes and the camera, the use of a mirror, and the partial occlusion by the antenna around the par-

ticipant’s head. We excluded 11 participants for whom pupil size data was available on less than 20% of epochs. The number of

participants included in the analyses related to pupil size was therefore 13.

QUANTIFICATION AND STATISTICAL ANALYSIS

Definition of regions of interest (ROIs) and preprocessing
We delineated by hand for each participant ROIs in native space using the TSE images for the LC and SN/VTA (see Figure 1B for an

example for one participant see section 8 of Supplementary Results for all participants), and the fourth ventricle, and the T1 image (for

the IC and the SC). All masks were resampled to match the EPI resolution resulting in a probabilistic mask that was then transformed
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into a binary mask. Threshold probability of being part of the ROI was 0.05. We extracted time series from the EPI images using these

masks. Anatomical landmark for the BF, the RN and to a lesser extent the hippocampus are less reliable in TSE and T1 images, thus,

we used anatomical atlases in normalized space (maps from77 for the BF; the Harvard Ascending Arousal Network atlas from78 for the

RN; the Harvard-Oxford cortical and subcortical structural atlases in FSL for the hippocampus). For comparisons between native and

normalized space, we also used an anatomical atlas for the LC.54 Temporal signal-to-noise ratio in ourmain ROI - the native space LC

- was 43.48 (SD = 5.46) (computed with the module TSNR from nipype, using a polynomial detrending of order 3).

For cortical ROIs, we used a complete parcellation of the whole brain53 into 75 regions. For all these regions, we performed epoch-

based analyses (see below) and reported the effect of global deviants in each region (see supplemental information). From these re-

gions, we selected the superior temporal gyrus and the superior temporal sulcus as the auditory processing regions, the calcarine for

a primary visual processing region, and the gyrus rectus as a part of the default mode network. For each ROI, we preprocessed the

signal by high-pass filtering (1/128 Hz).

Epoch-based analyses of fMRI signals, baseline correction
We performed epoch-based analyses on fMRI time-series extracted from each ROI. We first linearly regressed out potential con-

founding variables (movement parameters, the time-series extracted from the fourth ventricle, and physiological regressors), and

z-scored the residual signal per session. This signal was then upsampled (factor 1000, linear interpolation) and data was then

epoched around each stimulus onset (time window: �2 s to 12) for each participant. Then, the baseline signal was subtracted

from each epoch using a time window of �2 s–0 s.

Connectivity analysis and clustering
We estimated functional connectivity by calculating subject-level correlations on fMRI time-series extracted from each ROI across

regions. We first linearly regressed out potential confounding variables (movement parameters, the time-series extracted from the

fourth ventricle, and physiological regressors) as well as the effect of the stimuli, and z-scored the residual signal per session. We

performed 2 types of connectivity analyses: one across subcortical regions (LC, SN/VTA, BF, RF, SC, and IC) and one between

each of these regions and cortical regions with substantial coverage in our field of view (>50% of the region, see Supplementary re-

sults). We then performed hierarchical clustering based on those correlation matrices, using the module AgglomerativeClustering

from scikit-learn.79 The correlation matrix between subcortical structures was used as a distance metric (correlation distance),

and the correlation matrix between subcortical and cortical structures was used as a feature matrix on which cosine distance

was computed. The clustering algorithm used these distance matrices to cluster subcortical regions, using the average of distances

as a criterion to merge clusters.

Finally, we repeated these 2 analyses for blockswith the rare xxxxx and blocks with the rare xxxxY. For each subject, we compared

subcortico-subcortical correlations across blocks on the one hand, and cosine distance (between subcortico-cortical correlations)

across blocks on the other hand. We performed a t test at the group level to assess significance.

Finite Impulse Response (FIR) analyses
FIR analyses model a number of successive post-stimulus time steps that allow to take into account stimuli that are presented to the

participant during the time window of interest, controlling for potential superposition of effects. As for epoch-based analyses, the

predefined time-window was from 0 s to 12 s around the onset of patterns and we added additional regressors (movement param-

eters, the fourth ventricle time-series, and physiological regressors) in our model. For these analyses, the fMRI signal was upsampled

with a factor of 5. FIR analysesmake no assumptions about the hemodynamic response.We onlymodeled the effect of rare patterns.

At the group level, we tested whether the parameter estimates for these patterns differed from 0 by using a one sample cluster per-

mutation test (cluster-forming and cluster-level alphas of 0.05, two-tailed tests, 10,000 permutations).

Generalized linear model (GLM) analyses
As for FIR analyses, GLM-based analyses control for potential superposition of effects but assume the hemodynamic response to be

canonical. One GLM was estimated on time-series per ROIs. The design matrix included the 4 types of patterns convolved with the

canonical hemodynamic response function (as modeled in SPM) as well as additional regressors corresponding to movement pa-

rameters, time series in the fourth ventricle, and physiological regressors. Parameters (betas) were estimated at the subject level

with an auto-regressive AR(1) model. We then computed the difference in parameter estimates between rare and frequent patterns,

and tested for its significance (against 0) at the group-level using a t test.

Correction for multiple comparisons across time
For epoch-based analyses (of fMRI signals and pupil size) and FIR analyses, we performed non-parametric cluster-level paired

t-tests. As both require multiple comparisons across peri-stimulus times, family-wise error (FWE) correction for multiple comparisons

was computed using a cluster-based permutation test (cluster-forming and cluster-level alphas of 0.05, two-tailed tests, 10,000 per-

mutations) with the ‘mne’ package in Python.80
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