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Abstract

Many decisions result from the accumulation of decision-relevant information (evidence) over time. Even when maximizing deci-
sion accuracy requires weighting all the evidence equally, decision-makers often give stronger weight to evidence occurring
early or late in the evidence stream. Here, we show changes in such temporal biases within participants as a function of intermit-
tent judgments about parts of the evidence stream. Human participants performed a decision task that required a continuous
estimation of the mean evidence at the end of the stream. The evidence was either perceptual (noisy random dot motion) or
symbolic (variable sequences of numbers). Participants also reported a categorical judgment of the preceding evidence half-way
through the stream in one condition or executed an evidence-independent motor response in another condition. The relative
impact of early versus late evidence on the final estimation flipped between these two conditions. In particular, participants’ sen-
sitivity to late evidence after the intermittent judgment, but not the simple motor response, was decreased. Both the intermittent
response as well as the final estimation reports were accompanied by nonluminance-mediated increases of pupil diameter.
These pupil dilations were bigger during intermittent judgments than simple motor responses and bigger during estimation
when the late evidence was consistent than inconsistent with the initial judgment. In sum, decisions activate pupil-linked arousal
systems and alter the temporal weighting of decision evidence. Our results are consistent with the idea that categorical choices
in the face of uncertainty induce a change in the state of the neural circuits underlying decision-making.

NEW & NOTEWORTHY The psychology and neuroscience of decision-making have extensively studied the accumulation of de-
cision-relevant information toward a categorical choice. Much fewer studies have assessed the impact of a choice on the proc-
essing of subsequent information. Here, we show that intermittent choices during a protracted stream of input reduce the
sensitivity to subsequent decision information and transiently boost arousal. Choices might trigger a state change in the neural
machinery for decision-making.

arousal; confirmation bias; decision-making; human; psychophysics

INTRODUCTION

Many decisions need to be made on the basis of noisy,
incomplete, or ambiguous decision-relevant information. An
extensive body of research on perceptual decisions under
uncertainty has converged on the idea that evidence about the
state of the sensory environment is continuously accumulated
across time (1, 2). In the choice tasks commonly used in the lab-
oratory, performance is maximized by weighing evidence

equally across time (1, but see 3–5). Yet, the evidence weighting
applied by human and nonhuman decision-makers often devi-
ates from such flat weighting profiles. Some studies found
stronger weighting of early evidence (“primacy”; 6–9), others
stronger weighting of late evidence (“recency”; 10–12), and yet
others even nonmonotonic weighting profiles (13, 14). These
distinct temporal weighting profiles may inform about differ-
ences in the mechanisms underlying decision formation (14–
17). Yet, mechanistic inferences are limited by the fact that
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most of the above studies were conducted in different subjects
and used various different stimuli and tasks (with evidence
varying on different timescales). Thus, the resulting heteroge-
nous weighting profilesmay also reflect idiosyncratic strategies
and/or task or stimulus differences. Demonstrations of changes
in evidence weighting within subjects processing the same
stimulusmaterial are rare (15).

Real-life decisions are not isolated events but embedded in
a sequence of judgments based on continuous streams of in-
formation, raising the question of whether and how succes-
sive decisions interact. Even in elementary perceptual
decisions, postdecisional neural signals reflecting the previ-
ous choice have been identified in several regions of the mon-
key (18, 19) and rodent brain (20, 21). Likewise, perceptual
choices are biased by the choices made on previous trials (22–
37). Recently developed psychophysical protocols provide
new tools for quantifying the effect of choices on the subse-
quent processing of decision evidence. These tasks prompt
two successive judgments within the same trial: a binary
choice, followed by a continuous estimation (38–43) or a con-
fidence judgment (44, 45). In some of those tasks, the binary
choice is followed by an additional evidence stream, enabling
quantification of the impact of the choice on the processing of
subsequent evidence (38, 42). These task designs have yielded
two insights. First, the overall sensitivity to evidence follow-
ing the intermittent choice is reduced in a nonselective fash-
ion. Second, sensitivity for information consistent with the
binary choice is selectively enhanced, at the expense of
reduced sensitivity for choice-inconsistent evidence, yielding
a bias to confirm the initial choice (confirmation bias; 42).

Here, we studied the relationship between the nonselec-
tive and selective changes in sensitivity following a choice
and assessed their impact on temporal evidence weighting
profiles. To this end, we reanalyzed the data sets from both
these previous studies (38, 42). For one of the data sets, we
also explored a relationship between these behavioral phe-
nomena and pupil-linked, phasic arousal (35, 46–49).

MATERIALS AND METHODS

Behavioral Tasks

Perceptual task.
The University of Amsterdam ethics review board approved
the study (reference number 2014-BC-3517). All participants
gave their written informed consent. Participants were pre-
sented with two random dot motion stimuli in succession
and were asked to estimate the average motion direction
across the two intervals in each trial (Fig. 1A). A white line
plotted on top of the circular aperture served as the refer-
ence, whose position changed between trials. An auditory
cue after the first interval prompted the participants to make
one of the two intermittent responses: 1) report a binary
choice about the direction of dots in the first interval (clock-
wise (CW) or counterclockwise (CCW) with respect to the ref-
erence; two-third proportion of all trials) by pressing left/
right mouse buttons; or 2) make a choice-independent but-
ton press (one-third proportion of all trials) by pressing the
central mouse wheel. This intermittent response allowed us
to investigate if participants showed different sensitivity to
the second stimulus depending on whether they reported a

binary choice (so-called “Choice trials”) or made a choice-in-
dependent motor response (so-called “No-Choice trials”).
The position of the reference line for each participant was
constrained to be within the top half or bottom half of the
stimulus annulus (balanced across participants) to ensure a
fixed choice (CW/CCW)–response (left/right buttons) map-
ping. The delay between the first and second stimuli was
fixed (2 s), regardless of the reaction time of the subject.
Participants gave their estimation response by dragging a
red line around the circle using the mouse, starting from the
reference line, and clicking the mouse at the end point. Half
of all choice trials ended with an auditory feedback about
the correctness of the binary choice to motivate participants
to take the binary choice component seriously. An anima-
tion of the task structure is shown in the supplemental video
file (Supplemental Video S1; all Supplemental material is
available at https://doi.org/10.6084/m9.figshare.12752723).
Feedback for the estimation response was provided at the
end of each block (69 trials) as the mean deviation of the esti-
mation report from the physical stimulus direction. The co-
herence of the stimuli was fixed at a predetermined level for
each subject, and the direction of coherent dots in the two
intervals was sampled independently from five possible val-
ues (�20�, �10�, 0�, 10�, 20� relative to the reference line). In
all, 23 possible combinations of directions were used in the
experiment (excluding the two most obviously conflicting
directions:�20�/20� and 20�/�20�). A total of 90 trials for each
combination of stimulus directions in the first and second
intervals (45 Choice trials, and 45 No-Choice trials) were pre-
sented to the subjects. Subjects were not explicitly instructed
about the distribution of stimuli. However, it is possible that
subjects may have learned during the course of the task that
the extremely inconsistent stimuli in the two intervals (þ 20 in
interval 1, �20 in interval 2 and vice versa) are unlikely in the
task. However, such knowledge does not affect the sensitivity
measures we computed since the stimulus sequences across
both Choice and No-Choice conditions were counterbalanced
for every subject (see Supplemental Fig. S1).

In all the analyses that follow, we used trials where partici-
pants made an estimation judgment (Choice trials and No-
Choice trials). We excluded trials in which participants did
not comply with the instructions, i.e., when they pressed the
mouse wheel on Choice trials or a choice key on No-Choice
trials, trials in which the binary choice response time was
below 200ms, and trials where estimations were outliers.
Outliers were defined as those trials whose estimations fall
beyond 1.5 times the interquartile range above the upper-
quartile or below the lower-quartile of estimations. Together,
these excluded trials corresponded to �7% of the total trials
across participants. The distributions of trials used for analy-
sis are shown in Supplemental Fig. S1,A and B.

We analyzed data from the same set of participants as in
our earlier report (42). Please refer to this report for a
detailed description of the task, participants, and stimuli
used in the experiments.

Numerical task.
We reanalyzed data from the numerical integration task in
Ref. 38 using the same analyses methods as the perceptual
task. The task has a similar structure as the perceptual task
(Fig. 1B), with the exception that participants saw 16
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numerical samples displayed in succession and reported
their mean as a continuous estimate. Like in the perceptual
task, participants received a cue midway through the trial
(i.e., after the first 8 samples) to either report a binary choice
about the mean of the eight samples (greater or less than 50)
or to make a choice-independent motor response (by press-
ing the space bar). In 50% of all trials, the trial terminated
with feedback after the binary choice. On another 25% of the
trials, participants saw the second stream of eight numerical
samples and made the continuous estimation judgment at
the end (Choice trials). In the rest 25% of trials, participants
made a choice-independent motor response (No-Choice tri-
als) instead of the binary choice and a continuous estimation
judgment at the end. We analyzed data from all the trials
where participants made the estimation judgment (50% of
all trials).

The sequence of eight numbers in each interval was gener-
ated from one of the four predefined triangular skewed-den-
sity distributions with means of 40, 46, 54, or 60 (38). The
numbers ranged between 10 and 90. Numbers were sampled
such that two identical numbers were never presented in
succession. The first eight numbers were sampled from one
of the two distributions with means at 46 or 54, and the sec-
ond eight numbers were independently sampled from one of
the four distributions, randomized between trials. This
ensured that subjects could not guess themean of the second
sequence of numbers after the first interval.

We analyzed data from 20 out of 21 participants partici-
pated in the study. The remaining subject (subject 21) failed
to do the task (Spearman’s correlation between estimation
and mean evidence in No-Choice trials: rho=0.18, P = 0.117;
and in Choice trials: rho=0.17, P = 0.156). Please see the
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Figure 1. Behavioral tasks: schematic of sequence of events within a trial. A: Perceptual task. After a first random dot motion stimulus was shown for
750ms, participants received an auditory cue about whether to report a binary choice about the net motion direction (Choice trials) or to continue the
trial (No-Choice trials). The choice entailed discriminating the motion direction as clockwise (CW) or counterclockwise (CCW) with respect to the refer-
ence (white line shown at about 45� in this example). On half the Choice trials, auditory feedback was then given and the trial terminated. In the other
half, and in all No-Choice trials, a second motion stimulus was presented (with equal coherence as the first but different direction), and participants were
asked to report a continuous estimate of the mean direction of both stimuli by dragging a line along the screen with the mouse. Directions in the first
and second intervals were sampled from one of the five possible values shown, with respect to the reference (0� corresponds to direction along the
white reference line). See Supplemental Video S1 for a video of the task structure. B: Numerical task. After the first sequence of eight numerical samples,
participants were instructed to either press the space bar (a quarter of all trials; No-Choice trials), or to give their binary choice about the average of the
eight samples (mean >50 or<50; Choice trials). On two-thirds of Choice trials (constituting a half of all trials), auditory feedback was presented and the
trial terminated. In the rest, a second sequence of eight numerical samples was presented and participants were instructed to give a continuous esti-
mate of the mean across the two sequences. Adapted from Ref. 42 under a CC-BY license. C, top: continuous estimations as a function of mean direc-
tion across both stimuli in the perceptual task. Bottom: distribution of mean directions across trials. Data points, group mean; error bars, SE. Stimulus
directions and estimations were always expressed as the angular distance from the reference, the position of which varied from trial to trial (0� equals
reference). D: same as C but for Numerical task. Mean evidence across intervals 1 and 2 in D split into discrete bins for illustration.
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earlier reports (38, 42) for more detailed description of the
task, stimuli, and participants.

Pupillometry

Horizontal and vertical gaze position as well as pupil di-
ameter were recorded at 1000Hz using an EyeLink 1000 (SR
Research). The eye tracker was calibrated before each block.
Blinks detected by the EyeLink software were linearly inter-
polated from�150ms to 150ms around the detected velocity
change. All further data analysis was done using FieldTrip
(50) and custom Matlab scripts. We estimated the effect of
blinks and saccades on the pupil response through deconvo-
lution (35, 48, 51) and removed these responses from the
data using linear regression. The residual pupil signal was
bandpass filtered from 0.01 to 10Hz using a second-order
Butterworth filter, Z-scored per block of trials, and down-
sampled to 50Hz. We extracted epochs of the pupil time se-
ries comprising the trials of the behavioral task and baseline
corrected the pupil time-course in each trial by subtracting
the mean pupil diameter 500ms before the onset of the first
evidence stream on each trial. This yielded a single measure
of the task-evoked pupil response as used in previous studies
(35, 48).

Within each experimental condition (Choice, No-Choice,
Consistent, Inconsistent), we averaged the corrected pupil
responses across trials, time-locked to the onset of the first
evidence sequence and spanning up to the onset of the next
trial, or a maximumduration of 6 s.

Modeling Discrimination Judgments

Participants’ binary choices in the perceptual and numeri-
cal tasks were modeled using a sigmoidal probit psychomet-
ric function, relating the proportion of CW choices (>50
choices in the numerical task) to the stimulus direction
(mean of the 8 numerical samples) in the first interval, as
follows:

P Choice ¼ CWj/1Þ ¼ Uðd þ a/1Þð ð1Þ
where /1 was the stimulus direction (mean of 8 numerical
samples in Numerical task) in the first interval, U xð Þ ¼

1ffiffiffiffi
2p

p
ðx
�1

e�t2=2dt was the cumulative Gaussian function, a

was the slope of the psychometric function (perceptual
sensitivity), and d was the horizontal shift of the psycho-
metric function (systematic bias toward one of the two
choice alternatives). The free parameters a and d were
estimated using maximum likelihood estimation (52). In
the data from the numerical task, the sample means from
the first interval were binned into six bins, three on each
side of the reference (50) before fitting the psychometric
function.

Modeling Estimation Reports

General approach.
We used a statistical modeling approach to estimate the
relative contribution of the evidence (i.e., physical stim-
ulus or numerical evidence corrupted by noise) conveyed
by successive dot motion stimuli in each interval (mean
of numerical samples in each interval in the Numerical
task) to participants’ trial-by-trial estimation reports.

The noisy sensory (or numerical) evidence was described
by:

Xi ¼ /i þ d þ N 0;r2
� �

ð2Þ
where i [ (1, 2) denotes the interval, /i is the physical stimu-
lus direction (or the mean of 8 numerical samples in the
Numerical task), N (0, r2) was zero mean Gaussian noise
with standard deviation r (= 1/a), d and a were each observ-
er’s individual overall bias and sensitivity parameters
respectively taken from the psychometric function fit to the
binary choice data (Eq. 1).

Global Gain Model

We modeled a global, choice-related change in sensitivity
to evidence following an overt choice, by allowing the
weights to vary separately in Choice trials and No-Choice tri-
als. The estimations were modeled by:

yc ¼ w1cX1c þ w2cX2c þ N 0; nc
2

� �
ð3:1Þ

ync ¼ w1ncX1nc þ w2ncX2nc þ N 0; nnc
2

� �
ð3:2Þ

where yc (ync) was the vector of estimations across all Choice
(No-Choice) trials, w1c (w1nc) and w2c (w2nc) were the weights
for the noisy evidence X1c (X1nc) and X2c (X2nc) encoded in
intervals 1 and 2 in Choice (No-Choice) trials, respectively. N
(0, n2) was zero-mean Gaussian estimation noise with var-
iance n2 that captured additional noise in the estimations,
separately for Choice (nc), and No-Choice (nnc) trials, over
and above the sensory noise corrupting the binary choice.

Quantifying Confirmation Bias in Choice Trials

Using data from the sensory and numerical tasks, we
showed in our previous work that people exhibited confirma-
tion bias by overweighting evidence in the second interval
that was consistent with the intermittent binary choice (42).
To this end, we fitted a model referred to as “choice-based
selective gain” model to Choice trials (42). The model is
described below:

ycc ¼ w1ccX1cc þ w2ccX2cc þ N 0; ncc
2

� �
ð4:1Þ

if sign ϕ2ð Þ ¼ D

yic ¼ w1icX1ic þ w2icX2ic þ N 0; nic
2

� �
ð4:2Þ

if sign ϕ2ð Þ 6¼ D

where w1cc (w2cc) and w1ic (w2ic) were the weights, ncc and nic
were the estimation noise parameters for Consistent and
Inconsistent trials, respectively, /2 was the vector of physical
stimulus directions (mean of 8 samples in the Numerical
task) from the second interval, andD was the vector of inter-
mediate binary choice (values: 1 or �1 for CCW and CW
reports in the perceptual task, and for<50 and>50 reports
in the Numerical task, respectively). We excluded the subset
of trials where consistency is not defined in Eq. 4, i.e., /2 = 0�

in Perceptual task, and 50 in the Numerical task.
Confirmation bias is quantified as the difference in the
weightsw2cc andw2ic.
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Fitting Procedure

The models described in Eqs. 3 and 4 assume that the
stimuli and estimation judgments are corrupted by
Gaussian noise. Thus, on a given trial (comprising a
unique combination of experimental variables: first and
second stimuli and choice), the estimation that is pre-
dicted by a certain model parametrization is a continuous
random variable characterized by a probability density
function (hereafter, the estimation distribution). Similar
to our earlier report (42), we fitted the models to the data
using a maximum likelihood approach. For each trial, we
calculated the log-likelihood of the estimation judgment
provided by the participant given the estimation distribu-
tion predicted by the model. Using the Subplex algorithm
(53, 54), which is a generalization of the Nelder–Mead
simplex method, we searched for the parameter set that
maximized the sum of the log-likelihood values across all
trials.

Importantly, we obtained the estimation distributions of
the models numerically, which allowed us to estimate maxi-
mum likelihood parameters accurately without relying on
stochastic stimulations. To illustrate our numerical
approach, we next describe how the estimation distribution
is calculated in the global gain model (Eqs. 3.1 and 3.2). In a
No-Choice trial, the estimation predicted by the model is the
sum of three Gaussian variables (Eq. 3.2): the weighted noisy
(see Eq. 2) representation of the stimulus in interval 1
(w1ncX1nc�N(w1nc(/1 þ d), w1nc

2r2)), the weighted noisy
representation of the stimulus in interval 2 (w2ncX2nc�
N(w2nc(/2 þ d), w2nc

2r2)), and estimation noise (N(0, nnc
2)).

The estimation report, being the sum of three Gaussian vari-
ables, is a Gaussian variable itself with the following density
function (or estimation distribution):

Ync�N w1ncð/1 þ dð Þ þ w2ncð/2 þ dÞ;r2ðw1nc
2 þ w2nc

2Þ
þ nnc

2Þ:
Akin to a No-Choice trial, in a Choice trial, the estimation

report is also the sum of three random variables (Eq. 3.1). In
contrast to a No-Choice trial, however, the weighted noisy
representation of the stimulus in interval 1 is conditioned
upon the categorical choice that was given at the end of that
interval. Specifically, conditioning upon the choice means
that the density of the N(w1c(/1 þ d), w1c

2r2) probability
function is set to zero for all positive (negative) stimulus val-
ues, if a negative (positive) categorical choice was made (pos-
itive refers to the side on the right of the reference and
negative to the side on the left). This density truncation cap-
tures the fact that the noisy instantiation of the interval 1
stimulus gives rise (and thus cannot be incongruent) to the
categorical choice. Due to the truncation, the weighted noisy
representation of the interval 1 stimulus is a non-Gaussian
variable and, accordingly, the estimation report in Choice
trials is also a non-Gaussian variable. To derive the estima-
tion distribution, we thus numerically convolved the inter-
val 1 non-Gaussian density function with the other two
Gaussian density functions [w2cX2c�N(w2c(/2 þ d), w2c

2r2)
and N(0, nc

2)]. A similar convolution approach was used
when deriving the estimation distribution of the selective
gainmodel (Eq. 4).

ROC Analysis for Differences in Sensitivity to Evidence
in Interval 2

We assessed the impact of an overt choice on the evidence
in interval 2 from participants’ estimations in a model-free
fashion, using the so-called ROC analysis. This analysis was
based on the receiver operating characteristic (ROC) (55),
similar to the one used in our earlier report (see “model-free
analysis of estimation reports” in 42). The ROC index quanti-
fied the extent of separability between two distributions,
with the value 0.5 if the distributions were identical, and 1 if
they were completely separable. By computing ROC indices
between estimation distributions of sets of trials that dif-
fered in their input, we could assess the sensitivity of the ob-
server in using that input to guide their estimation reports.

For the perceptual task, in each condition (Choice and No-
Choice), we first sorted trials based on the directional evi-
dence in interval 1 (/1). For each /1, we ran the ROC analysis
on all pairs of estimation distributions, separated by 10� of
directional evidence in interval 2 (/2): �20� versus �10�,
�10� versus 0�, 0� versus 10�, and 10� versus 20�. This gave
us four ROC indices per /1, one index for every pair of distri-
butions compared. We then computed a weighted average
ROC index for each /1, weighting the individual ROC indices
by the number of trials that went into the ROC analysis. This
approach ensured that the resulting ROC indices are robust
to changes in /1. These indices are averaged to obtain one
single ROC index per subject for each condition.

ROC indices for the numerical task were computed similar
to the above procedure with the following exceptions: mean
evidence in interval 1 and interval 2 were binarized
(mean>50 or mean<50) resulting in two bins for interval 1
and interval 2, respectively. We obtained qualitatively simi-
lar results using four bins to compute ROC indices. These
binarized values were treated equivalent to /1 and /2 in the
perceptual task above.

Simulated Estimation from Best Fitting Parameters

We simulated estimations for Choice trials using the trial
distributions and best fitting parameters of the Global Gain
model (Eq. 3.1) in individual participants in both the tasks.
To this end, we first calculated the noisy representations X1

and X2 corresponding to intervals 1 and 2, using Eq. 2 above.
We ensured that the sign of representations in X1 matches
the binary choices of subjects (by randomly sampling the
representations until a sample with the correct sign as that
of the subjects’ choice was obtained), and then combined the
representations from both intervals with the corresponding
parameters for each individual subject using Eq. 3.1. The
choice-based selective gainmodel (Eqs. 4.1 and 4.2) was fit to
the simulated estimations to recover consistent and incon-
sistent weights (Fig. 4B).

Confidence Intervals for Individual Measures

We used bootstrapping (56) to obtain confidence inter-
vals for the fitted parameters and ROC indices for each
subject. Within each subject, we randomly selected trials
with replacement and computed the model-based and
model-free metrics on the bootstrapped data set. To com-
pute model weights, we used the same fitting procedure
but using the best fitting parameters of the actual data as

CHOICE-COMMITMENT BIAS

1472 J Neurophysiol � doi:10.1152/jn.00462.2020 � www.jn.org
Downloaded from journals.physiology.org/journal/jn at Staats Und Universitatsbibliothek Hamburg (134.100.186.001) on September 13, 2021.

http://www.jn.org


starting points. We repeated this procedure 500 times and
obtained confidence intervals from the distribution of esti-
mated metrics.

Computation of Correlation Values

We used Pearson’s correlation coefficients to examine how
different measures are related to each other in each task. We
then estimated the confidence intervals of the correlation
coefficients by generating a distribution of 10,000 boot-
strapped Pearson’s correlations for each task. To compute
each of these correlations, we randomly sampled, with
replacement, the pair of parameters to be correlated from
the bootstrapped estimates in every subject. We repeated
this process 10,000 times and computed the confidence
intervals from this distribution.

To obtain the correlation values for data pooled from both
of the tasks (Figs. 3 and 4), we first obtained Pearson’s corre-
lation coefficient for data set from each task (also reported in
the figures). We then applied Fisher transformation on the
correlation values and calculated their weighted average to
obtain the pooled Fisher-transformed correlation coefficient.
This quantity was used to obtain the pooled Pearson’s corre-
lation coefficient (using inverse Fisher transformation). To
obtain confidence intervals for the pooled correlation coeffi-
cient, we generated a distribution of 10,000 bootstrapped
pooled correlation coefficients by combining 10,000 ran-
domly sampled (with replacement) bootstrapped correlation
coefficients in the Perceptual task data set with 10,000 ran-
domly sampled (with replacement) bootstrapped correlation
coefficients in the Numerical data set. We computed the con-
fidence intervals of the pooled correlation coefficient from
this distribution.

To compare the difference between two correlation coeffi-
cients (Fig. 5, C and D), we applied Fisher-transformation on
the correlation coefficients and computed the absolute dif-
ference between the Fisher-transformed correlation coeffi-
cients. This quantity was used to obtain the corresponding P
value.

Statistical Tests

Nonparametric permutation tests (56) were used to test
for group-level significance of individual measures for each
task, unless otherwise specified. This was done by randomly
switching the condition labels of individual observations
between the two paired sets of values in each permutation.
After repeating this procedure 100,000 times, we computed
the difference between the two groupmeans on each permu-
tation and obtained the P value as the fraction of permuta-
tions that exceeded the observed difference between the
means. All P values reported were computed using two-sided
tests, unless otherwise specified.

For the Perceptual task, the number of unique permuta-
tions was 210 = 1,024, substantially less than the above num-
ber of permutations. All qualitative results reported here
were unchanged when using exactly these 1,024 unique per-
mutations of condition labels to compute the permutation
distribution as described above.

We used repeated measures two-way analysis of variance
(ANOVA) with interval and condition (Choice, No-Choice) as
factors to test for group-level significance of the interaction

between condition and interval for both the tasks (Fig. 3A).
We used standard parametric methods to assess statistical
significance of correlation coefficients.

Data and Analysis Code

Behavioral data for the Perceptual Task are available at
https://doi.org/10.6084/m9.figshare.7048430 (42) and for
the Numerical Task are available at https://datadryad.org/
resource/doi:10.5061/dryad.40f6v (38). Raw pupil data from
the Perceptual task are made available at https://doi.org/
10.6084/m9.figshare.14039294. Analysis code reproducing all
the analyses in the paper is made available at https://github.
com/BharathTalluri/choice-commitment-bias.

RESULTS
Participants reported a continuous estimate of the mean of

fluctuating sensory (perceptual task, Fig. 1A, Supplemental
Video S1) or symbolic (numerical task, Fig. 1B) evidence across
two successive intervals. This estimate needed to be based on
integrating some internal representation of the fluctuating
evidence—motion direction or numerical value in the percep-
tual or numerical tasks, respectively—across the two stimulus
intervals.

On a subset of trials (so-called Choice trials), participants
were also asked to report an intermediate choice after the
first stimulus: a fine direction discrimination judgment rela-
tive to a visually presented reference line (Perceptual Task)
or comparison of the numerical mean with 50 (Numerical
Task). On the remaining set of trials (No-Choice trials), par-
ticipants were asked to press a button for continuing the
trial, without judging the first evidence stream. The cue
informing participants whether to report the discrimination
judgment or to press a choice-independent button press
came after the first stimulus interval. This design enabled us
to quantify the degree to which evidence in each interval
contributed to the final estimation and whether this
depended on the overt report of a categorical choice (see
MATERIALS AND METHODS).

The mean accuracy of the intermediate choice was 81% ±
10.8% (mean ± SD) for the perceptual task and 67% ± 6.7% for
the numerical task. Estimation responses in both tasks
increased with mean directional evidence across the two
intervals (Fig. 1, C and D) and did not differ between Choice
and No-Choice trials, with negligible and statistically non-
significant differences in the regression slopes for estima-
tions as a function of mean evidence (perceptual task:
0.0256, P = 0.8449; numerical task: 0.0125, P = 0.9083).

Down-Weighting of Evidence following Intermittent
Choice

We previously found lower sensitivity to subsequent evi-
dence in the Choice condition compared with the No-choice
condition in the Numerical Task (38). Here, we replicated
this pattern of results, now also for the Perceptual Task,
using a somewhat different statistical modeling approach as
well as a model-free approach based on ROC analysis (see
MATERIALS AND METHODS). Both approaches quantified the
sensitivity of the final estimation judgments for evidence in
each interval. Across participants, model weights for the sec-
ond evidence stream were significantly smaller in Choice
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trials compared with No-Choice trials (Fig. 2, A and C).
Likewise, a model-free measure of sensitivity to subsequent
evidence (area under the ROC curve) was smaller on Choice
trials compared with No-choice trials (Fig. 2, B and D). This
shows that the reduction in sensitivity following a categori-
cal judgment generalizes from the domain of numerical to
perceptual decision-making.

Flip of Temporal Weighting of Sensory Evidence
between Choice and No-Choice Conditions

We next assessed if and how the intermittent choice
affected the relative weighting of early versus late evidence
in the decision process underlying the final estimation judg-
ments. For both tasks, the weights in Choice trials were
higher than in No-Choice trials for the first interval, and
lower than in No-Choice trials for the second interval (Fig.
3A). Correspondingly, we found a significant interaction
between trial type (Choice vs. No-Choice) and interval for
both tasks (Fig. 3A, see Supplemental Fig. S2 for the corre-
sponding interaction in ROC indices). This effect could also
explain the similarity in overall estimation accuracy between
Choice and No-Choice conditions (Fig. 1, C andD).

The interaction yielded a marked change in the temporal
evidence weighting profiles across both intervals: a flip from
recency in the No-Choice condition to primacy in the Choice
condition (Fig. 3B). This flip was evident in the individual
data: while the sums of weights from both intervals were

highly similar for Choice and No-Choice trials in each sub-
ject (Fig. 3C), the difference in Choice and No-Choice weights
was negatively correlated between intervals (Fig. 3D). No
such constraint was imposed in the statistical models used
to estimate the weights (see MATERIALS AND METHODS). These
results indicate the distribution of a limited cognitive
resource across both intervals: The intermittent choice after
the initial evidence boosted sensitivity to that early evi-
dence, at the cost of reducing sensitivity to subsequent
evidence.

Non-selective Sensitivity Reduction Is Coupled to
Selective Confirmation Bias

Our previous analyses of the Choice conditions in the
same data sets have shown that sensitivity is selectively
enhanced for information consistent with the intermittent
choice and reduced for choice-inconsistent evidence, yield-
ing a bias to confirm the initial choice (42). We wondered
whether the individual degree of this selective gain modula-
tion (confirmation bias) was related to the nonselective gain
modulation (overall reduction in sensitivity) applied to new
evidence. We quantified the overall gain modulation as the
difference in weights of interval 2 between the Choice trials
and the No-Choice trials, and the selective gain modulation
as the difference in weights of interval 2 between trials
with choice-consistent and choice-inconsistent evidence
(Fig. 4). These two gain modulations could be independent,
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suggesting different mechanistic bases for the modulations,
or tightly correlated across subjects, suggesting a common
underlying mechanism (Fig. 4A). We found the latter to be
the case in the data: participants with a stronger global gain
reduction also showed a stronger selective gain modulation
(Fig. 4B). This was neither trivial (both are conceptually dis-
tinct effects) nor was it an artefact of our fitting procedure.
We ruled out fitting artefacts by recovering the selective gain
weights from data produced by simulating the Global gain
model. In stark contrast to the empirical data (Fig. 4B), the
recovered (from Global gain model simulations) selective
gain effect was uncorrelated with the empirical nonselective
gain effect (Fig. 4C).

Pupil Responses during Decisions Reflect Cognitive
Factors Shaping Evidence Reweighting

Taken together, the behavioral effects are in line with a
change in the state of the decision-making machinery
brought about by the initial choice. Such state changes may
emerge from the recurrent dynamics of cortical decision cir-
cuits alone (57, 58). Another factor that may instigate a state
change is the transient neuromodulatory input from central
arousal (e.g., locus coeruleus noradrenaline) systems that
occurs during decisions (48, 59–61). Such a neuromodulatory
transient may be useful when the choice is prompted before

decision circuits have reached a stable decision state
through evidence accumulation (1)—a condition likely to
hold for the intermittent choice in our task.

These considerations led us to analyze participants’ pupil
size during the perceptual task (no pupil data were recorded
in the numerical task). Nonluminance-mediated dilations of
the pupil are a marker of the responses of brainstem arousal
systems (48, 59, 62–64). As expected, the random dot stimu-
lus at the start of trial elicited a pupil constriction, which was
invariant between Choice and No-Choice trials (Fig. 5A, left,
“interval 1”), reflecting the pupil response to retinal illumi-
nation (65). The initial pupil constriction was followed by a
smaller increase in pupil diameter during the second inter-
val following the intermittent response, and a larger res-
ponse following the estimation report at the end of trial
(Fig. 5, A and B). These later, nonluminance-mediated pupil
responses may be due to cognitive factors and/or the motor
responses associated with the behavioral reports of both
decisions (47, 48, 66).

Critically, the pupil response after the intermittent res-
ponse was bigger for Choice than No-Choice trials (Fig. 5A,
middle), an effect that can neither be explained by the motor
responses which occurred in both conditions, nor by the lon-
ger response times in the Choice condition [and the associ-
ated longer accumulation of central inputs in the peripheral
pupil apparatus (47, 48)]: response times were, in fact,
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ticipants). Error bars, SE; F-statistic, interaction between
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ditions, across participants from both tasks. D: difference
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Data points, individual participants; error bars on each data
point, 66% bootstrap confidence intervals; solid lines, best
fitting lines; r, Pearson’s correlation coefficients along with
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shorter in Choice than No-choice trials (see blue and red ver-
tical lines respectively in Fig. 5A; permutation test, P =
0.0112). Thus, the stronger pupil response during Choice
than No-Choice trials likely reflected the intermittent deci-
sion (47–49).

Pupil responses after interval 2 exhibited another
cognitive effect, being larger for Consistent trials than
Inconsistent trials emerging �500ms before the estimation
reports (Fig. 5B, right). Due to the delay of the pupil response
relative to the central arousal response (47–49), the differen-
tial arousal response likely emerged during the second inter-
val of evidence processing, here dependent on the consis-
tency of the evidence with the preceding choice. Again, this
difference could not be explained by response times for the
estimation reports, which were about equally long in both
conditions (group mean response times: 0.78 s and 0.79s for
Consistent and Inconsistent trials respectively; condition
difference: P = 0.4532, permutation test). In sum, pupil
responses in different phases of the trial reflected the cog-
nitive factors that were associated with the dynamic
changes in evidence weighting: the need to report an ini-
tial judgment of the first evidence stream (Fig. 5A) and
the consistence of the second evidence stream with the
initial judgment (Fig. 5B).

Association between Evoked Pupil Responses and
Evidence Sensitivity

We finally performed exploratory analyses relating the pu-
pil responses in the respective two trial intervals to the evi-
dence weighting as inferred from our behavioral analysis.
The complex and prolonged temporal profile of evoked pupil
responses in our task complicates the within-subject

analyses of this association at the single-trial level, which
have proved useful in the context of simpler tasks with more
transient responses (48, 49, 67). Specifically, the ramping of
the pupil during the final estimation judgment was pro-
tracted well into the baseline interval of subsequent trials
(Fig. 5,A and B), and thus affected single-trial baseline meas-
urements in a fashion that complicates the quantification of
single-trial response amplitudes. In rough first analyses, we
found no systematic within-subject associations between
evidence sensitivity for the second interval and the ampli-
tude of pupil responses (data not shown) but did not pursue
this further due to these complexities.

Across-subjects correlations of the mean pupil responses
and model weights for the different conditions were not
affected by this problem but were limited by the comparably
low number of individuals measured in the perceptual task.
We found a strong, negative across-subjects correlation
between mean pupil response following the intermittent
report and the evidence from the second interval in the
Choice condition (Fig. 5C, left), but not the No-Choice condi-
tion (Fig. 5C, right). The difference in pupil response ampli-
tude between Choice and No-Choice conditions did not
predict the corresponding difference between second-inter-
val weights in these two conditions (Pearson’s r =�0.205, P =
0.5697). We did not find an across-subjects correlation
between mean pupil response amplitudes during the second
interval on Consistent or Inconsistent trials and the corre-
sponding weights for the second evidence (Fig. 5D).

DISCUSSION
Recent work has begun to expose the impact of choices on

the accumulation of subsequent decision evidence, revealing
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an overall reduction in sensitivity to subsequent evidence
(38) combined with a selective suppression of the gain of evi-
dence inconsistent with the initial choice (confirmation bias;
42). Here, we extended this nascent line of work, by showing
that an intermittent discrimination judgment about an evi-
dence stream introduces a change in the temporal weighting
of the evidence on a final estimation judgment from recency
to primacy, compared with an intermittent behavioral
response independent of the evidence. We also showed that
the above three effects are tightly related, consistent with a
common underlying mechanism. Finally, we have found
that these behavioral phenomena are accompanied by pupil-
linked arousal responses that aremodulated by the same fac-
tors that produce the evidence reweighting: intermittent
choice and consistency of later evidence with that choice.

The here-discovered, strong relationship between the
individual strength of the choice-induced, global sensitivity
reduction and choice-induced, selective confirmation bias is
not a given. Both effects were operationalized in terms of
two orthogonal comparisons: the choice-induced sensitivity
reduction by comparing sensitivity between trials with an

intermittent choice and trials without such a choice; the con-
firmation bias by comparing trials with subsequent evidence
that was consistent or inconsistent with the choice, within
the trials that contain an intermittent choice. Thus, the pres-
ence of a global sensitivity reduction effect does not imply
presence of the confirmation bias, and vice versa. Even so,
their correlations were tight, in line with a common underly-
ingmechanism.

The present data add to a growing body of literature indi-
cating that the dynamics of evidence weighting for decision-
making is highly context dependent. Both the timescale and
the temporal profile of this weighting applied to the same
physical evidence are affected by a range of factors including
the type of judgment (68, 69), the type of information avail-
able in the stimulus (15), reliability of the sensory informa-
tion (70), and the temporal statistics of the environment (3,
5, 71). We here extend this body of evidence, by showing that
the temporal weighting profile, within a given individual
and a given task, can be flipped by asking the participant for
an intermittent choice in the middle of the evidence stream.
Previous studies characterizing the dynamics of evidence
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Figure 5. Evoked pupil responses reflect cognitive factors that drive evidence reweighting. A: time courses of average pupil diameter aligned to onset
of interval 1 for Choice and No-Choice conditions in the Perceptual task. Left: average time course across whole trial. Middle: close-up of time course
during second stimulus interval (following intermediate response). Right: time-course aligned to estimation response (following second stimulus interval).
Solid vertical lines after interval 1, mean intermittent response times across participants; solid vertical lines after interval 2, mean estimation response
times across participants; dashed gray vertical lines, different events during the trial. All panels: solid lines, mean across participants; shaded region, SE;
black horizontal bars, P< 0.05, cluster-based permutation test Choice vs. No-Choice. B: same as A, but for Consistent and Inconsistent trials. C: relation-
ship between pupil response (computed as the mean pupil response in the gray-shaded time window in A) and model weights to second interval, in
Choice trials (left) and in No-Choice trials (right). Solid line, best fitting line. D: as C, but for pupil responses and model weights in Consistent or
Inconsistent trials and for the gray interval from B.

CHOICE-COMMITMENT BIAS

J Neurophysiol � doi:10.1152/jn.00462.2020 � www.jn.org 1477
Downloaded from journals.physiology.org/journal/jn at Staats Und Universitatsbibliothek Hamburg (134.100.186.001) on September 13, 2021.

http://www.jn.org


accumulation during decision-making reported diverse tem-
poral weighting profiles ranging from recency to uniform to
primacy. But the differences between these studies in the
stimuli, task protocols, and participants have complicated
direct comparisons and mechanistic conclusions. Along
with other recent findings (15), our findings establish that
these temporal weighting profiles are neither fixed task prop-
erties nor fixed traits of decision-makers and lend them-
selves tomechanistic interpretation.

One possibility is that the effects of intermittent choices
identified here are behavioral signatures of decision-related
cortical circuit dynamics (57, 58, 72). Previous studies
showed that these dynamics were task dependent and ex-
hibit distinct state trajectories depending on whether the
judgment is coarse categorization or fine discrimination (73).
In a protracted task involving sequential categorical and esti-
mation judgments such as ours, it is possible that the same
decision circuits underlie both judgments. Once these deci-
sion circuits have settled in an attractor (choice commit-
ment), this will reduce the network’s sensitivity to all new
evidence (1, 57, 58, 74)—an effect that may hold regardless of
whether that evidence is consistent or inconsistent with the
choice (also see Ref. 38, Supplement). In this scenario, the
attractor also boosts the estimations for the evidence preced-
ing the categorical judgment resulting in increased sensitiv-
ity to that evidence we see in our data. Due to selective
feedback from the accumulator circuit to early sensory
regions encoding the evidence, the attractor state in accu-
mulator networks may additionally modulate the processing
of subsequent evidence in a selective fashion (15, 58) that
depends on the consistency of that evidence with the initial
choice, yielding a confirmation bias effect. These ideas
should be explored with extended, hierarchical circuit mod-
els adapted to our task.

Another possibility, mutually nonexclusive with the above, is
that transient neuromodulatory inputs to the decision circuits
from brainstem arousal systems play a role in the overall sensi-
tivity reduction to postdecisional evidence. The intermittent
choices were always prompted after the first interval by the ex-
perimenter and under uncertainty. This is a setting in which
the cortical decision circuitsmight not yet have reached a stable
decision state on individual trials. In such a setting, the release
of neuromodulators in the cortex induced by the choice may
push decision circuits into an attractor state (1). Note that this
effect is different from a gain modulation of sensory responses,
which should increase evidence sensitivity, provided that the
neuromodulatory input is still present when the new evidence
arrives. Our pupil results, although exploratory and limited in
nature, are roughly consistent with this idea: we found bigger
pupil responses during the intermittent choice than the evi-
dence-independent button press, and the individual amplitude
of that choice-related response was negatively related to the
individual sensitivity to subsequent evidence. Because of the
task-related limitations of the current pupil analyses (outlined
in RESULTS), the pupil results should be regarded as a starting
point for future investigations into the role of phasic arousal in
theweighting phenomena studied here.

Although our task design allows for assessing so far under-
studied aspects of decision-making, it also has limitations
that open up alternative possibilities for explaining our find-
ings. First, in all the No-Choice trials, the intermittent button

press was followed by additional evidence in the second
interval, whereas a proportion of Choice trials (50% in
Perceptual task and 66% in Numerical task) ended with feed-
back about the categorical judgment without additional evi-
dence. Consequently, participants may have expected a
second stimulus on the No-Choice, but not the Choice trials,
which may have affected (improved) the sensitivity for the
upcoming stimulus (75–78). Second, and relatedly, partici-
pants may have only expected feedback on Choice trials, but
not on No-Choice trials, again with differential effects on
subsequent evidence processing (79, 80). Third, our task
entailed a key role of certain forms of memory, as it required
participants to store some format of representation of the
evidence from the first interval in short-termmemory across
the intermittent response interval, in order to combine it
with the second interval evidence. Indeed, evidence accu-
mulation can be based not only on current sensory input but
also on information from the visual processing pipeline (81,
82) or even stored in iconic memory for up to 500ms (83),
and working memory plays a critical role in related tasks
(40, 84). In our task, the necessity to form and report a cate-
gorization judgment on Choice trials may have interacted
with this memory in ways that contribute to the pattern of
results. However, it is worth noting that neither of these
alternate mechanisms can account for the confirmation bias
observed in the task (42) without requiring additional
assumptions. Future investigations should disambiguate
between these different explanations by removing the feed-
back trials from the task design and verifying if participants
exhibit the observed changes in sensitivity to the second
stimulus interval.

To conclude, we have shown that intermittent choices on
protracted streams of decision evidence have versatile and
coupled effects on evidence accumulation, which lead to a
reweighting of evidence sensitivity over time as well as to
confirmation bias. These insights open the door for connect-
ing laboratory studies of decision-making to realistic settings
requiring protracted evaluation of time-varying evidence in
multiple successive decisions.
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