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A B S T R A C T   

Human observers can reliably report their confidence in the choices they make. An influential framework con
ceptualizes decision confidence as the probability of a decision being correct, given the choice made and the 
evidence on which it was based. This framework accounts for three diagnostic signatures of human confidence 
reports, including an opposite dependence of confidence on evidence strength for correct and error trials. 
However, the framework does not account for the temporal evolution of these signatures, because it only de
scribes the transformation of a static representation of evidence into choice and the associated confidence. Here, 
we combine this framework with another influential framework: dynamic accumulation of evidence over time, 
and build on the notion that confidence reflects the probability of being correct, given the choice and accu
mulated evidence up until that point. Critically, we show that such a dynamic model predicts that the diagnostic 
signatures of confidence depend on time; most critically, it predicts a stronger opposite dependence of confidence 
on evidence strength and choice correctness as a function of time. We tested, and confirmed, these predictions in 
human behaviour during random dot motion discrimination, in which confidence judgments were queried at 
different points in time. We conclude that human confidence reports reflect the dynamics of the probability of 
being correct given the accumulated evidence and choice.   

1. Introduction 

Human observers can provide very precise judgments about the 
confidence of their choices. They often claim high confidence for correct 
choices and low confidence for errors. Accurate confidence estimates are 
adaptive because confidence is used to regulate future behaviour 
(Desender, Boldt, Verguts, & Donner, 2019; Desender, Murphy, Boldt, 
Verguts, & Yeung, 2019; van den Berg, Zylberberg, Kiani, Shadlen, & 
Wolpert, 2016). An influential framework posits that internal repre
sentations of decision confidence, and agents’ overt reports thereof, 
reflect the probability of being correct, given the choice made and given 
the evidence on which it was based (Kepecs, Uchida, Zariwala, & 
Mainen, 2008; Pouget, Drugowitsch, & Kepecs, 2016; Sanders, Hangya, 
& Kepecs, 2016). In this framework, both choice and confidence are 
directly based on the same underlying computations. This principled 
approach predicts three key qualitative signatures of confidence (Kepecs 
et al., 2008): Signature 1: an interaction between evidence strength and 

choice accuracy, whereby confidence increases with evidence strength 
for correct choices, but decreases for incorrect choices; Signature 2: 
confidence increases monotonically with accuracy; Signature 3: a 
steeper increase in performance for high versus low confidence trials as a 
function of evidence strength. These three signatures have been 
observed in neural data (Kepecs et al., 2008), several implicit behavioral 
measures of confidence (Braun, Urai, & Donner, 2018; Kepecs et al., 
2008; Sanders et al., 2016; Urai, Braun, & Donner, 2017), and explicit 
confidence reports of human observers (Fleming, van der Putten, & 
Daw, 2018; Sanders et al., 2016). An important limitation of this 
framework is that it is static: a fixed quantity of evidence determines 
both the choice and associated confidence. Therefore, this framework 
does not account for the dynamics of decision-making, the associated 
trade-off between speed and accuracy, and their effect on confidence 
reports. 

To address this issue, we combine this framework with an evidence 
accumulation model. According to evidence accumulation models, 
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perceptual decisions are based on a gradual accumulation of noisy 
sensory evidence over time (Gold & Shadlen, 2007; Ratcliff & McKoon, 
2008). In two-choice tasks, a decision maker accumulates evidence for 
each option, and the option for which the integrated evidence first 
crosses a decision threshold is selected, indicating commitment to choice 
(Ratcliff & McKoon, 2008). The efficiency (i.e., signal-to-noise ratio) of 
the accumulation process is governed by the so-called drift rate. To ac
count for confidence within such a dynamic model, Kiani and Shadlen 
(2009) proposed that confidence reflects the probability of being cor
rect, given choice, evidence and time. Although such conceptualization 
explains the scaling of confidence with evidence strength (Kiani & 
Shadlen, 2009), with decision time (Kiani, Corthell, & Shadlen, 2014) 
and with evidence volatility (Zylberberg, Fetsch, & Shadlen, 2016), an 
often cited limitation of this account is that it cannot explain why human 
confidence judgments are higher for correct than for error trials within a 
single level of evidence strength (Pleskac & Busemeyer, 2010). Put 
differently, this model cannot easily explain how humans become aware 
of their mistakes. In order to account for this, it has been proposed that 
evidence continues to accumulate after the decision boundary has been 
reached (Moran, Teodorescu, & Usher, 2015; Pleskac & Busemeyer, 
2010; Resulaj, Kiani, Wolpert, & Shadlen, 2009; Van Den Berg et al., 
2016; Yu, Pleskac, & Zeigenfuse, 2015). Confidence then reflects (a 
transformation of) the accumulated evidence after this period of post- 
decision accumulation. With non-zero drift rate, such a model will on 
average accumulate further evidence in favor of the selected choice 
when it was correct, whereas it will on average accumulate evidence for 
the non-selected choice in case of an error (i.e., potentially leading to a 
change of mind; Van Den Berg, Anandalingam, et al., 2016). Thus, the 
process of post-decision evidence accumulation allows the model to 
detect its own errors in a graded fashion. Such dynamic models quan
tifying confidence as a function post-decisional evidence and decision 
time have been fruitful in explaining decision confidence (Calder-Travis, 
Bogacz, & Yeung, 2020; J. Drugowitsch, Moreno-Bote, Churchland, 
Shadlen, & Pouget, 2012; Jan Drugowitsch, Moreno-Bote, & Pouget, 
2014; Moran et al., 2015; Moreno-Bote, 2010; Pereira et al., 2020; 
Pleskac & Busemeyer, 2010; Van Den Berg, Anandalingam, et al., 2016; 
Yu et al., 2015). 

It remains unclear, however, whether such a model also accounts for 
the three diagnostic signatures of confidence identified by Sanders et al. 
(2016), and if so how these signatures depend on the duration of post- 
decision accumulation. Here, we address this question through the 
combination of simulations of a popular evidence accumulation model, 
the drift diffusion model (DDM), and the analysis of human behaviour in 
a perceptual decision task. First, we show that these signatures of con
fidence dynamically depend on post-decision processing time, a pattern 
that was also seen in human participants. Second, if confidence is 
quantified after a period of post-decision accumulation, a stopping cri
terion is needed, similar to the decision boundary for first-order choices. 
Here, using a manipulation of evidence volatility, we shed light on the 
question whether human participants use a time-based stopping rule (i. 
e., terminate sampling after a certain amount of time) or an evidence- 
based stopping rule (i.e., terminate sampling after the accumulated ev
idence reached a certain threshold value). 

2. Methods 

2.1. Participants 

Thirty participants (two men; age: M = 18.5, SD = 0.78, range 
18–21) took part in return for course credit. All participants reported 
normal or corrected-to-normal vision and were naïve with respect to the 
hypothesis. All but four participants were right handed. Four partici
pants were excluded because their performance was not different from 
chance level in the immediate condition (as assessed by a binomial test). 
All data and analysis code have been made publicly available and can be 
accessed at github.com/kdesende/2020_Cognition_Desender. Non- 

overlapping analyses of these data have been published elsewhere 
(Desender, Boldt, et al., 2019). 

2.2. Ethics statement 

Participants provided written informed consent before participation. 
All procedures were approved by the local ethics committees at Ghent 
University. 

2.3. Stimuli and apparatus 

Stimuli were presented in white on a black background on a 20-in. 
LCD monitor with a 75 Hz refresh rate, using Psychtoolbox3 (Brai
nard, 1997) for MATLAB (The MathWorks, Natick, MA). Random 
moving white dots were drawn in a circular aperture centered on the 
fixation point. The current experiment was based on code provided by 
Kiani, Churchland, and Shadlen (2013). Parameter details can be found 
there. 

2.4. Procedure 

Participants were presented with dynamic random dot motion and 
were asked on each trial to decide as fast and accurate as possible 
whether a subset of dots was coherently moving towards the left or the 
right side of the screen (See Fig. 1). Each experimental trial started with 
a fixation dot for 750 ms followed by random dot motion that lasted 
until a response was made, with a maximum of 3 s. On each trial, the 
difficulty of these decisions was controlled by manipulating the per
centage of coherently moving dots, which was either 0%, 5%, 10%, 20% 
or 40%. In each block, there was an equal number of leftward and 
rightward movement, and the different coherence levels were randomly 
intermixed within a block. We also manipulated the volatility of motion 
coherence over the course of a single trial. In the low evidence volatility 
condition, the proportion of coherently moving dots was the same on 
every timeframe within a trial. In the high evidence volatility condition, 
the proportion of coherently moving dots was on each timeframe 
sampled from a Gaussian distribution with mean equal to the generative 
distribution of that trial and a standard deviation of 0.256. In the high 
volatility condition, additional noise is thus introduced in the decision 
process. Previous work has shown that this manipulation, which speeds 
up RTs and increases confidence, is diagnostic for an evidence-based 
stopping rule for immediate decisions (Zylberberg et al., 2016). We 
here used this manipulation to shed light on the stopping rule for 
delayed confidence reports. 

In order to query the dynamics of post-decision processing and its 
influence on the diagnostic signatures of confidence there were three 
different interrogation conditions. In the immediate condition, partici
pants jointly indicated their response and their level of confidence. The 
numerical keys ‘1’, ‘2’, ‘3’, ‘8’, ‘9’, and ‘0’ on top of the keyboard 
mapped onto ‘sure left’, ‘probably left’, ‘guess left’, ‘guess right’, 
‘probably right’, and ‘sure right’, respectively. In the delayed blank 
condition, participants indicated their response (left or right) by press
ing ‘c’ or ‘n’ with the thumbs of their right and left hand, respectively. 
Then, a blank screen was presented for 1 s, after which the following six 
confidence options were presented on the screen: ‘sure correct’, ‘prob
ably correct’, ‘guess correct’, ‘guess error’, ‘probably error’, ‘sure error’ 
(reversed order for half of the participants). Participants had unlimited 
time to indicate their level of confidence by pressing one of the corre
sponding numerical keys (i.e., ‘1’, ‘2’, ‘3’, ‘8’, ‘9’, and ‘0’) on top of the 
keyboard. The delayed extra evidence condition was similar to the 
delayed blank condition, except that now 1 s of continued random 
motion was presented during the 1 s interval between the response and 
the confidence judgment. The continued motion had the same direction, 
the same motion coherence and the same level of evidence volatility as 
the pre-decisional motion. 

The entire experiment comprised twelve blocks of sixty trials each, 
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including three practice blocks. In the first practice block, participants 
only indicated the direction of the dots (i.e., no confidence), and each 
trial stopped after a response was given. Only coherence levels of 0.2 
and 0.4 were presented. When participants made an error, the message 
‘Error’ was shown on the screen for 750 ms. This block was repeated 
until mean accuracy exceeded 75%. The second practice block was 
similar, except that now the full range of coherence levels was used. This 
block was repeated until mean accuracy exceeded 60%. Block three 
served as a last practice block, and was identical to the main experiment. 
No more feedback was presented from this block on. Each participant 
then performed three blocks of each interrogation condition, with the 
specific order depending on a Latin square. Before the start of block 
seven and block ten (i.e., start of a new interrogation condition), par
ticipants performed eight practice trials with 0.4 coherence using the 
procedure of the subsequent block, to get familiarized with the response 
keys. These eight trials were repeated until accuracy exceeded 75%. 
After each block, participants received feedback about their perfor
mance in that block, including mean response time on correct trials, 
mean accuracy, and the absolute value of the correlation between ac
curacy and confidence. Participants were motivated to maximize these 
three values. 

2.5. Statistical analyses 

Behavioral data and model predictions were analyzed using mixed 
regression modeling. This method allows analyzing data at the single- 
trial level. We fitted random intercepts for each participant; error vari
ance caused by between-subject differences was accounted for by adding 
random slopes to the model. The latter was done only when this 
significantly increased the model fit. RTs and confidence were analyzed 
using linear mixed models, for which F statistics are reported and the 
degrees of freedom were estimated by Satterthwaite’s approximation 
(Kuznetsova, Brockhoff, & Christensen, 2014). Accuracy was analyzed 

using logistic linear mixed models, for which Х2 statistics are reported. 
Model fitting was done in R (R Core Team, 2013) using the lme4 package 
(Bates, Maechler, Bolker, & Walker, 2015). 

2.6. Drift diffusion model 

2.6.1. Fitting 
Drift diffusion model parameters were estimated using hierarchical 

Bayesian estimation within the HDDM toolbox (Wiecki, Sofer, & Frank, 
2013). The HDDM uses Markov-chain Monte Carlo (MCMC) sampling, 
which generates full posterior distributions over parameter estimates, 
quantifying not only the most likely parameter value but also uncer
tainty associated with each estimate. Due to the hierarchical nature of 
the HDDM, estimates for individual subjects are constrained by group- 
level prior distributions. In practice, this results in more stable esti
mates for individual subjects. For each model, we drew 100.000 samples 
from the posterior distribution. The first 10% of these samples were 
discarded as burn-in and every second sample was discarded for thin
ning, reducing autocorrelation in the chains. Group level chains were 
visually inspected to ensure convergence, i.e. ruling out sudden jumps in 
the posterior and ruling out autocorrelation. Additionally, all models 
were fitted three times, in order to compute the Gelman-Rubin R hat 
statistics (comparing within-chain and between-chain variance). We 
checked and confirmed that all group-level parameters had an R hat 
between 0.98 and 1.02, showing convergence between these three in
stantiations of the same model. Because individual parameter estimates 
are constrained by group-level priors, data for different subjects are 
dependent, and frequentist statistics cannot be used. The probability 
that a condition differs from another can be computed by calculating the 
overlap in posterior distributions. 

When fitting the data (choices and reaction times), both drift rate (v) 
and decision bound (a) were allowed to vary as a function of coherence 
and evidence volatility, whereas non-decision time (ter) was fixed across 

Fig. 1. Experimental task. Sequence of events in the 
experimental task. Participants decided, as fast and 
accurately as possible, whether the majority of dots 
were moving left or right. In the immediate condi
tion, they did so by jointly indicating their choice 
(left or right) and confidence (sure correct, probably 
correct or guess correct) with a single response. In the 
delayed condition, participants first indicated their 
choice with their thumbs (left or right), and after a 1 s 
blank or 1 s of continued motion, they indicated the 
degree of confidence in their decision using a six- 
point confidence scale (ranging from certainly cor
rect to certainly wrong).   
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conditions. According to our hypothesis, the effect of evidence volatility 
will be expressed in the within-trial variability parameter (σ). When 
fitting the DDM this parameter is fixed (i.e., to 0.1 in the Ratcliff 
Diffusion model or to 1 in the currently used HDDM). Because σ is a 
scaling factor, after fitting the model, we next scaled drift rate, decision 
bound and within-trial variability for each condition so that decision 
bound was equal to 1. Thus, this approach allows estimating within-trial 
variability. Note that under this approach, an implicit assumption is that 
the decision bound does not differ between the different conditions. 

2.6.2. Simulations 
Using the estimates obtained from the HDDM fit, predictions were 

generated using a random walk approximation of the diffusion process 
(Tuerlinckx, Maris, Ratcliff, & De Boeck, 2001). This method simulates a 
random walk process that starts at z*a (here, z was an unbiased starting 
point of 0.5) and stops once the integrated evidence crosses 0 or a. At 
each time interval t, a displacement Δ occurs with probability p and a 
displacement -Δ with probability 1-p. Both quantities are given in Eq. 
(1). 

p =
1
2

(

1+
μ

̅̅̅
τ

√

σ

)

∆ = σ
̅̅̅
τ

√
(1) 

Drift rate is given by μ, and within-trial variability is given by σ. In all 
simulations τ was set to 1e-4. In order to construct the heat map rep
resenting the probability of being correct shown in Fig. 2, 300.000 
random walks without absorbing bounds were generated, using the 
fitted drift drates. This assured sufficient data points across the relevant 
part of the heat map. Subsequently, the average accuracy was calculated 
for each (response time, evidence) combination, based on all trials that 
had a data point for that (response time, evidence) combination. 
Smoothing was achieved by aggregating over evidence windows of 0.01 
and τ windows of 2. 

To generate model fits for choices and RTs and model predictions for 
confidence, we used the parameters obtained by the HDDM fit. For each 
combination of coherence levels, within-trial evidence volatility and 
interrogation condition, we simulated 5000 trials per participant. Both 
immediate and delayed confidence predictions were obtained by 
reading out the probability of being correct from the heat map given RT 
and evidence, conditional on the response given. Model predictions 
about confidence were then converted from a continuous scale to a 
categorical scaling by dividing them into three (immediate condition) or 
six (delayed condition) equal-sized bins. For the immediate condition, 
confidence predictions were obtained without any post-decision accu
mulation. In the adapted version confidence was quantified with a small 
temporal delay of .1 s; other (small) values led to very similar results. For 
delayed confidence predictions with a time-based stopping rule, after 

reaching the decision bound, the random walk process continued for one 
second (i.e., the duration of the ITI) plus the average response speed of 
confidence judgments in that condition minus the non-decision time of 
that condition. For the evidence-based stopping rule, after the evidence 
crosses a, an evidence-based stopping rule (i.e., a horizontal boundary) 
was placed at a + a*0.125 and 0 (or similarly at –a*0.125 and a if evi
dence initially crossed 0), and confidence was quantified at the time 
when the continued evidence accumulation crossed this second-order 
threshold. To project model confidence onto the same scale as human 
confidence, we used a linear transformation. 

3. Results 

3.1. Dynamic signatures of confidence 

Following recent work that has modeled confidence as post-decision 
evidence accumulation (Calder-Travis et al., 2020; Pleskac & Buse
meyer, 2010; Van Den Berg, Anandalingam, et al., 2016), we reasoned 
that confidence reports may differ, depending on whether they are 
probed around the time of the response (Kiani & Shadlen, 2009; Zyl
berberg et al., 2016) or only later in time, after additional post-decision 
processing (Moran et al., 2015; Pleskac & Busemeyer, 2010; Yu et al., 
2015). In both cases, confidence reflects the probability of being correct, 
given the choice and accumulated evidence up until that point. The heat 
map in Fig. 1A reflects the probability of being correct given evidence 
(Y-axis) and time (X-axis), conditional on the choice (Kiani & Shadlen, 
2009; Zylberberg et al., 2016). The current heat map shows this prob
ability conditional on reaching the upper boundary (i.e., an “up” 
choice). Note that the heat map is flipped over the abscissa when the 
lower boundary is reached instead (i.e., a “down” choice). Thus, confi
dence in this model reflects the probability of being correct, given 
choice, evidence (potentially post-choice) and time. With respect to 
Signature 1 (an interaction between evidence strength and choice ac
curacy), initial model simulations show that confidence increases for 
both corrects and errors when confidence is quantified at the time the 
bound is reached (Fig. 2B), whereas the interaction between evidence 
strength and choice accuracy emerges when confidence is queried after a 
small temporal delay (Fig. 2C) and this interaction is most clearly seen 
after a more substantial period of post-decision processing (Fig. 2D). In 
the following, we will test these predictions in human participants 
during random dot motion discrimination with additional confidence 
ratings. 

3.2. Perceptual decisions as noisy evidence accumulation 

To unravel how coherence and volatility affected latent cognitive 

Fig. 2. Quantifying decision confidence within an 
evidence accumulation framework. A. Noisy sensory 
evidence is accumulated over time, until the decision 
variable reaches one of two bounds (a or 0), corre
sponding to a left or right choice, respectively. After 
the decision variable reaches a bound, evidence 
continues to accumulate. The heat map shows the 
probability of being correct given time and evidence, 
conditional on reaching the upper boundary (i.e., 
making an “up” response). Confidence is quantified 
as the probability of the choice being correct, given 
elapsed time and the integrated evidence (i.e., rep
resented by the color of the heat map). Confidence 
can be queried at different points in time. B-D. Model 
predictions about signature 1, an interaction between 
evidence strength and accuracy, depending on 
whether confidence is quantified at the same time as 
the choice (B; i.e. at boundary crossing), after a small 
temporal delay (C), or after considerable additional 
post-decision accumulation (D).   
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variables in the decision process, we fitted choices and reaction times 
using a hierarchical version of the drift diffusion framework (Wiecki 
et al., 2013). Because the effects of coherence and volatility were not 
modulated by the timing of confidence reports (immediate vs delayed) 
for both RTs, F < 1, Bayes Factor (BF) = 0.008, and accuracy, F < 1, BF =
0.01, the RT and accuracy data were combined. First, as typically 
observed in random dot motion tasks, drift rates increased mono
tonically with coherence level (see Fig. 3A), with significant differences 
in drift rate between all coherence levels (averaged across volatility 
levels), ps < 0.001. Estimated drift rates did not depend on the level of 
evidence volatility, ps > 0.119. Second, as we predicted (Zylberberg 
et al., 2016), our manipulation of within-trial evidence volatility was 
captured by the within-trial drift variability parameter σ (see Fig. 3B; 
Methods). When averaged over different coherences, estimated within- 
trial variability was higher for high compared to low volatility, p =
.014 (pair-wise comparisons within each coherence value: 0% coher
ence: p = .091; 5% coherence: p = .049; 10% coherence: p = .259; 20% 
coherence: p = .106; 40% coherence: p = .457). 

These model fits captured the patterns seen in behavioral data 
(Fig. 3C-D). Accuracy increased with the level of coherence (data: F 
(4,22) = 267.48, p < .001; model: F(4,22) = 619.57, p < .001), whereas 
evidence volatility and the interaction between both variables left ac
curacy unaffected (data: Fs < 1; model: ps > 0.213). Reaction times 

decreased with increasing coherence levels (data: F(4,22) = 30.68, p <
.001; model: F(4,22) = 52.25, p < .001), and were shorter with high 
compared to low volatility (data: F(1,25) = 9.10, p = .006; model: F 
(1,25) = 17.91, p < .001), an effect that was mostly pronounced at low 
coherence levels (data: F(4,22) = 13.21, p < .001; model: F(4,22) =
15.53, p < .001). 

3.3. Post-decision accumulation explains dynamic signatures of 
confidence 

Next, we used our model fits to obtain qualitative and quantitative 
predictions of confidence reports about the three dynamic signatures of 
confidence. In order to create a heat map reflecting the probability of 
being correct, we simulated a large number of trials using the fitted drift 
rates and calculated average accuracy for each combination of time and 
evidence. Confidence predictions were quantified by reading out the 
values from this heat map (reflecting the probability of being correct) for 
each combination of evidence, time, and choice. The model predictions 
concerning confidence were highly similar when using an analytical 
solution (Moreno-Bote, 2010) instead. 

Fig. 3. Model fits and task performance. A. Drift rate scales monotonically with the proportion of coherently moving dots, but did not differ for high and low 
volatility conditions. B. Within-trial variability (σ) selectively varied as a function of evidence volatility, whereas it was unaffected by motion coherence. Large dots: 
group averages; small dots: individual participants. Distributions show the group posteriors. Statistical significance is reflected in overlap between posterior dis
tributions over parameter estimates (Materials and Methods). C-D. Accuracy (C) and RTs (D) as a function of coherence and evidence volatility, separately for the 
empirical data (points and bars) and model fits (lines and shades). Inset, distribution of empirical and fitted RTs. Shades and error bars reflect SEM of model and data, 
respectively. 
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3.3.1. Signature 1: interaction between evidence strength and choice 
accuracy 

The first diagnostic signature of confidence established previously 
(Kepecs et al., 2008), is an increase of confidence with evidence strength 
for correct trials, but a decrease for error trials. In the immediate con
dition, confidence increased with coherence level, F(4,44.81) = 15.62, p 
< .001. Crucially, there was also the predicted interaction between 
coherence level and choice accuracy, F(4,1990.70) = 14.09, p < .001. 
Confidence increased with evidence strength for correct trials (linear 
contrast: p < .001), but there was no significant effect for error trials 
(linear contrast: p = .070; see Fig. 4A). In contrast, as visualized in 
Fig. 2B, the model predicts that when confidence is quantified at the 
time when the decision boundary is reached, confidence scales with 
coherence, F(4,25) = 32.76, p < .001, but there is no interaction be
tween coherence and choice accuracy, F < 1. 

The above mismatch can easily be remedied by assuming that choice 
and confidence cannot be computed simultaneously, for example due to 
a brief refractory period (Marti, King, & Dehaene, 2015; Pashler, 1994). 
Indeed, when confidence was calculated with a small temporal delay 
(100 ms, Fig. 2C; see Methods), the model did predict the interaction 
between coherence and choice accuracy, F(4,200) = 153.09, p < .001. 
As in the behavioral data, the model with the small temporal delay 
predicted increasing confidence with coherence for correct trials (linear 
contrast: p < .001), but not for error trials (linear contrast: p = .541; 
Fig. 4A). In the remainder, we will continue with predictions from the 
model with temporal delay. 

In both delayed conditions, confidence scaled with coherence level 
(blank condition: F(4,51.8) = 5.49, p < .001; extra evidence condition: F 
(4,4571.1) = 4.75, p < .001). In both conditions, there was also an 
interaction between coherence and choice accuracy (blank condition: F 
(4,3625.6) = 53.38, p < .001; extra evidence condition: F(4,4568.7) =
71.45, p < .001). Within the correct trials, confidence increased with 
coherence levels (blank and extra evidence conditions, linear contrasts: 
p < .001. Instead, within the error trials, confidence decreased as a 
function of coherence (blank and extra evidence conditions, linear 
contrasts: p = .001). This interaction was captured by a model which 
terminated post-decision accumulation after a fixed amount of time (cf. 
Fig. 2D; Materials and Methods). This model also showed the scaling of 
confidence with coherence (F(4,200) = 6.00, p < .001), as well as the 
interaction with choice accuracy (F(4,200) = 274.64, p < .001). Similar 
to the human data, confidence increased with coherence for correct 
trials (linear contrast: p < .001) and decreased for error trials (linear 
contrast: p < .001; Fig. 4B). Finally, there was a three-way interaction 
between coherence, choice accuracy and interrogation condition (data: 
F(8,13,466.5) = 18.22, p < .001, model: F(4,450) = 181.88, < 0.001). 

3.3.2. Signature 2: monotonically increasing accuracy as a function of 
confidence 

The second diagnostic signature of confidence is that it mono
tonically predicts choice accuracy. Indeed, an approximately linear 
relation between confidence and mean accuracy was observed in the 
data for both the immediate condition, b = 0.13, t(29.92) = 12.82, p <
.001, the delayed blank, b = 0.12, t(27.29) = 16.12, p < .001, and the 
delayed extra evidence condition, b = 0.13, t(23.33) = 15.45, p < .001. 
This pattern was also captured by the model in the immediate condition, 
b = 0.10, t(24.9) = 22.75, p < .001, and in the delayed condition, b =
0.12, t(120.97) = 23.42, p < .001 (see Fig. 4B). Note that these slopes 
did not differ depending on the moment in time when confidence was 
queried (data: X2 = 2.03, p = .363; model: X2 = 3.76, p = .152). 

3.3.3. Signature 3: steeper psychometric performance for high versus low 
confidence 

The third diagnostic signature of confidence is that the relation be
tween accuracy and evidence strength should be steeper for trials judged 
with high versus low confidence. The model predicts that this difference 
should be larger for the delayed compared to the immediate condition 

(Fig. 4C). To test this prediction, confidence reports were divided into 
high or low using a split-median, separately per participant. As ex
pected, the interaction between coherence and confidence in predicting 
accuracy was observed both in the immediate condition (data: X2(4) =
30.9, p < .001; model: X2(4) = 15.4, p < .001), and in the delayed 
condition (data: delayed blank: X2(4) = 84.15, p < .001, extra evidence: 
X2(4) = 56.64, p < .001; model: X2(4) = 3569.7, p < .001; see Fig. 4C). 
Finally, there was a significant three-way interaction between coher
ence, confidence and interrogation condition (data: X2(8) = 24.51, p =
.002; model: X2(4) = 62.11, p < .001). 

3.4. Evidence volatility dissociates time-based and evidence-based 
stopping criteria 

If confidence is quantified after additional post-decision processing, 
a stopping rule has to be implemented determining at which point in 
time confidence is quantified. In the previous simulations, following 
previous research a time-based stopping rule was implemented (Pleskac 
& Busemeyer, 2010; Yu et al., 2015). Specifically, confidence was 
quantified after a specified amount of time has passed. An alternative 
implementation, however, is that the stopping rule for confidence re
ports is evidence-based, just like the stopping rule for the preceding 
choice process (Moran et al., 2015). According to this evidence-based 
stopping rule, after reaching the initial choice threshold, agents 
impose a second threshold and a delayed confidence report is given 
when this second threshold is reached. Because the static signatures 
discussed before do not arbitrate between the two delayed confidence 
stopping criteria (see Supplementary Materials), we next turn towards 
our manipulation of evidence volatility. Previous work has shown that 
an evidence-based model can explain the volatility effect on confidence 
for immediate confidence judgments (Zylberberg et al., 2016). Accord
ing to Zylberberg et al. (2016) this is because noise pushes the evidence 
accumulation process faster towards the bound (i.e., it produces shorter 
reaction times) and shorter reaction times are associated with higher 
confidence (Kiani et al., 2014). As can be seen in Fig. 5A, in the im
mediate condition our data did show a clear negative relation between 
confidence and reaction times on correct trials (data: b = − 0.19, t(24.2) 
= − 4.89, p < .001; model: b = − 0.48, t(24.94) = − 9.92, p < .001). In the 
delayed condition, a similar negative relation was apparent in the guess- 
correct to sure-correct range (see Fig. 5B); but reaction times decreased 
again for confidence levels below guess-correct, i.e., for trials where 
participants identified their response as being an error. These probably 
reflect trials on which participants made fast errors which they then 
detected. This inverted U-shape was seen in both data and model (data: 
first-order polynomial: b = − 18.01, t(7005) = − 37.87, p < .001, second- 
order polynomial: b = − 5.37, t(6999) = − 11.69, p < .001; model: first- 
order polynomial: b = − 84.21, t(2.006e+05) = − 121.3, p < .001, 
second-order polynomial: b = − 60.38, t(2.006e+05) = − 88.8, p < .001). 
This finding again corroborates the notion that slower reaction times 
relate to lower confidence, a finding mostly expressed for immediate 
confidence. We reasoned that the same manipulation could be used to 
disentangle a time-based versus an evidence-based stopping rule for 
delayed confidence judgments. 

For immediate confidence reports, model predictions closely capture 
the pattern seen in human confidence ratings (see Fig. 5C). Confidence 
monotonically increased with coherence levels (data: F(4,22) = 27.47, p 
< .001; model: F(4,22) = 27.68, p < .001), and was higher with high 
evidence volatility (data: F(1,25) = 41.19, p < .001; model: F(1,25) =
9.90, p = .004). Similar to RTs, the effect of evidence volatility on 
confidence was most pronounced with low coherence values (data: F 
(4,22) = 4.46, p = .008; model: F(4,22) = 30.79, p < .001). To easily 
interpret this effect, Fig. 5E shows differences between the low and high 
volatility condition. As can be seen, for both model and data, confidence 
was increased with high evidence volatility, particularly with low 
coherence values. 

For delayed confidence reports, the data favored the evidence-based 
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Fig. 4. Three dynamic signatures of confidence. A. Signature 1: an interaction between evidence strength and choice accuracy. When confidence is quantified shortly 
after the decision bound has been reached (“immediate”), both model and data show an interaction between evidence strength and choice accuracy in the immediate 
condition. The same pattern was observed for the delayed condition, although the interaction effect was clearly much stronger here. B. Signature 2: monotonically 
increasing accuracy as a function of confidence. Both model and data show a monotonic scaling of accuracy depending on the level of confidence. C. Signature 3: 
Steeper psychometric performance for high versus low confidence. Both model and data show a steeper psychometric performance for trials judged with high versus 
low confidence. Notes: data for the delayed conditions are averaged over blank and extra evidence conditions. All plots show empirical data (black points and bars) 
and model predictions (grey lines and shades). Shades and error bars reflect SEM of model and data, respectively. 
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stopping rule over the time-based stopping rule (see Fig. 5D and F). The 
data and both models showed a monotonic increase of confidence with 
coherence levels (data extra evidence: F(4,22) = 46.67, p < .001; data 
blank: F(4,22) = 33.38, p < .001; time-based model: F(4,22) = 60.83, p 
< .001; evidence-based model: F(4,22) = 46.03, p < .001), and an 
interaction between coherence and volatility (data extra evidence: F 
(4,22) = 10.39, p < .001; data blank: F(4,22) = 8.42, p < .001; time- 
based model: F(4,22) = 11.94, p < .001; evidence-based model: F 
(4,22) = 23.50, p < .001). However, evidence volatility affected confi
dence in the data and the model with the evidence-based stopping rule 
(extra evidence: F(1,25) = 23.78, p < .001; blank: F(1,25) = 28.69, p <
.001; evidence-based rule, F(1,25) = 8.96, p = .006), but not with the 
time-based stopping rule, F < 1. Finally, in the human data, delayed 

confidence reports were similar irrespective of whether post-decision 
evidence or a blank screen was presented following the choice (data 
not shown). This was further confirmed by an analysis including post- 
decision evidence (extra evidence or blank), which did not show a 
three-way interaction, F < 1, BF = 0.037. 

Fig. 5F suggests that the effect of volatility on confidence for the 
lowest coherence values is even stronger than predicted by the model 
with the evidence-based stopping rule. This is most likely because the 
sigma parameter, which captures evidence volatility, was estimated 
based on choices and RTs only (i.e., not based on confidence). Therefore, 
our predictions about immediate and delayed confidence are entirely 
constrained by the decision process itself. Some evidence hints at the 
possibility that post-decision accumulation is different from pre-decision 

Fig. 5. Within-trial evidence volatility arbitrates between an evidence-based and a time-based stopping rule. A-B. Average reaction times on correct trials as a 
function of decision confidence, separately for immediate (A) and delayed (B) confidence judgments. C–F. Immediate confidence (C and E) and delayed confidence 
(D and F) as a function of coherence and evidence volatility, separately for the empirical data (points and bars) and model predictions (lines and shades). C and D 
show average confidence, E and F show differences between low and high evidence volatility. The inset in D shows two potential stopping criteria for post-decision 
processing: post-decision accumulation can stop after a fixed period of time (i.e., a vertical time-based rule) or when a fixed amount of evidence is reached (i.e., a 
horizontal evidence-based rule). Notes: shades and error bars reflect SEM of model and data, respectively. 
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accumulation (Yu et al., 2015). In the current context, it could therefore 
be that post-decision processing from memory amplifies noise in the 
sampling process. Indeed, when simulating the model with an evidence- 
based stopping rule using a slightly increased sigma value in the high 
volatility condition (σ = 0.575), it captures the pattern in the data even 
more tightly (see Fig. 5F). This finding is in line with the possibility that 
post-decision accumulation is not fully determined by the pre-decision 
choice process. 

4. Discussion 

Normative models explain the sense of confidence in a decision as the 
probability of a choice being correct. Although such formalization is 
principled and fruitful, it remains unclear whether and how it can ac
count for dynamic expressions of confidence. To investigate this, we 
formalized confidence within an evidence accumulation framework as 
the probability of being correct, given the accumulated evidence up 
until that point. We tested model predictions concerning three diag
nostic signatures of confidence, most notably an interaction between 
evidence strength and choice accuracy, both for immediate and delayed 
confidence reports. There was a close correspondence between model 
and human data for all three signatures, showing that these signatures of 
confidence depend on the time at which confidence is queried. 

4.1. Dynamic signatures of decision confidence 

Static models have conceptualized confidence as the probability of 
being correct (Kepecs et al., 2008; Maniscalco & Lau, 2012; Sanders 
et al., 2016). Intuitively, when option A has a high (vs low) probability 
of being the correct answer, the model will give response A with high (vs 
low) confidence. One advantage of such a formalization is that it pre
dicts three qualitative signatures of confidence (Sanders et al., 2016). A 
limitation of such an account is that this framework is inherently static, 
and therefore does not take time into account. To resolve this, we relied 
instead on a dynamic evidence accumulation framework to probe these 
different signatures across time. We are not the first to account for 
confidence within an evidence accumulation framework (Kiani et al., 
2014; Moran et al., 2015; Pleskac & Busemeyer, 2010; Ratcliff & Starns, 
2013; Zylberberg et al., 2016). Previous work has conceptualized im
mediate confidence as the probability of being correct given evidence 
and elapsed time (Kiani et al., 2014;Kiani & Shadlen, 2009; Zylberberg 
et al., 2016). Choices are formed when evidence reaches a fixed decision 
threshold, and both choice and confidence are quantified when this 
threshold is reached. As shown in Fig. 2B, such a model does not predict 
an interaction between evidence strength and choice accuracy, a pre
diction at odds with many existing datasets. To account for this, we 
followed the approach taken by Pleskac and Busemeyer (2010) and 
allowed the evidence to continue accumulation following boundary 
crossing. By quantifying confidence across time, our model was able to 
account for these discrepancies. Specifically, our model was able to 
explain signature 1, an interaction between evidence strength and 
choice accuracy, in the immediate condition, as seen in behavioral data, 
by assuming that immediate confidence is quantified with a small 
temporal delay from the choice, suggesting a brief refractory period 
(Marti et al., 2015; Pashler, 1994). Thus, an important novel insight of 
the current work is that some form of post-decision evidence accumu
lation is necessary, even to explain immediate confidence reports. This 
also has implications for the way in which confidence judgments are 
elicited. Studies that query confidence only after the choice, on a scale 
which allows participants to indicate potential changes of mind (Boldt & 
Yeung, 2015; Van Den Berg, Anandalingam, et al., 2016), are more 
likely to find strong evidence for post-decision processing and more 
accurate confidence judgments compared to studies that simultaneously 
query choice and confidence (Kiani & Shadlen, 2009; Zylberberg et al., 
2016). Our findings also have more widespread implications, for 
example with regard to literature on advice giving (Bonaccio & Dalal, 

2006). Advice typically comes with a degree of confidence (Gaertig & 
Simmons, 2018). From the probabilistic perspective proposed here, this 
degree of confidence could also be taken into account when determining 
one’s own confidence, by conditioning on the confidence of the advice. 
The timing of such advice might be an important indicator of its accu
racy, and thus its confidence. However, it remains an open question 
whether observers do indeed weight the advice of others depending on 
its timing. 

As an important caution, we note that our conclusion about the ne
cessity of post-decision accumulation might be limited to models with a 
static decision boundary. In models where the decision boundary col
lapses over the course of a trial, reaction times are predicted to be 
shorter for correct trials than for errors (Drugowitsch et al., 2012). Given 
the close link between reaction times and errors (i.e., as shown in 
Fig. 5A), it remains a possibility that a model with a collapsing boundary 
is able to account for the interaction between evidence strength and 
choice correctness without post-decision evidence accumulation. 

Previous modeling work has unraveled boundary conditions of this 
first diagnostic signature, the interaction between evidence strength and 
choice accuracy. Model simulations have shown that this interaction 
disappears if stimuli are only probabilistically related to choices (Adler 
& Ma, 2018), and if the static model has knowledge about evidence 
strength on the single-trial level (Rausch & Zehetleitner, 2019). 
Remarkably, however, no previous work has unraveled the role of time 
in this signature. The current work overcomes this limitation, by 
incorporating the notion of confidence reflecting the probability of 
being correct within a dynamic evidence accumulation framework. Our 
model simulations show that at the time of the boundary crossing, 
confidence increases with evidence strength for both corrects and errors, 
whereas the interaction effect only emerges with time. Crucially, this 
pattern was also observed in the empirical data. This has important 
consequences for studies relying on this signature to identify brain re
gions coding for decision confidence (Kepecs et al., 2008; Kepecs & 
Mainen, 2012). Because non-human animals cannot provide explicit 
confidence judgments, an alternative approach has been to test which 
brain regions show the three diagnostic signatures of confidence (Kepecs 
et al., 2008). Our results, however, suggest a slightly more complicated 
picture. Such regions should not show signature 1 (an interaction be
tween evidence strength and choice correctness) at the time of choice 
commitment; they should, however, show this signature shortly after the 
time of commitment. In general, the magnitude of these three signatures 
in such brain regions should grow with post-decision time. 

4.2. Post-decision processing terminates using an evidence-based stopping 
rule 

Post-decision evidence accumulation has been proposed as a mech
anism explaining confidence (Moran et al., 2015; Pleskac & Busemeyer, 
2010; Van Den Berg, Anandalingam, et al., 2016) and biases in confi
dence judgments (Navajas, Bahrami, & Latham, 2016). It remains un
clear, however, how such a model decides when to stop accumulating 
evidence. The decision process itself is believed to terminate once the 
accumulated evidence reaches a decision boundary. Likewise, our data 
favored an evidence-based stopping rule (i.e., the sampling process 
terminates when a certain level of evidence has been reached), while it 
was incompatible with a time-based stopping rule (i.e., sampling ter
minates after a certain time has elapsed). Only the evidence-based rule 
could explain increased confidence with high evidence volatility. Intu
itively, high evidence volatility increases (immediate) confidence 
because the injection of noise in the decision process speeds up RTs 
(Zylberberg et al., 2016), and faster RTs are associated with higher 
confidence. The model with an evidence-based stopping rule for delayed 
confidence judgments similarly predicts higher confidence with high 
evidence volatility, because the noise again pushes the decision variable 
towards a certain level of evidence (i.e., a second bound). This effect 
does not appear with a time-based stopping rule, however, because the 
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noise only affects the evidence (i.e., how fast is a certain level of evi
dence reached), but not the timing of post-decision accumulation itself. 
Therefore, using a time-based stopping rule the effects of evidence 
volatility are averaged out, and no differences in confidence are pre
dicted. In sum, a second important insight of the current work is that 
human participants also use an evidence-based stopping rule in delayed 
confidence judgments. 

4.3. Sources of post-decisional evidence accumulation 

The hypothesis that confidence is affected by post-decisional evi
dence accumulation has evoked a strong interest in neural signatures of 
post-decisional processing (Fleming et al., 2018; Murphy, Robertson, 
Harty, & O’Connell, 2015; Yu et al., 2015). For example, recent neu
roimaging work has linked this process of post-decision evidence accu
mulation to a specific neural signal in the EEG (Murphy et al., 2015), 
that is sensitive to fine-grained levels of decision confidence (Boldt & 
Yeung, 2015; Desender, Murphy, et al., 2019). One question that has 
been largely overlooked so far, is what kind of information determines 
post-decisional evidence accumulation. For example, external informa
tion could drive post-decisional evidence accumulation (Fleming et al., 
2018). Alternatively, internal sources, such as additional evidence from 
the sensory buffer (Resulaj et al., 2009) or resampling from memory 
(Vlassova & Pearson, 2013), could determine such accumulation. To 
contrast these two possibilities, the current work featured conditions 
with and without additional external evidence during the post- 
decisional period. Interestingly, confidence judgments were highly 
similar between these two conditions. This demonstrates that, at least in 
our current experimental design, participant benefit exclusively from 
internal resampling of the earlier evidence, whereas continued external 
sampling has no measurable influence. This does not imply that post- 
decisional evidence will never play a role in confidence. For example, 
in a recent study that de-correlated the strength of pre-decisional and 
post-decisional evidence (i.e., so that sometimes post-decision evidence 
was highly informative when pre-decision evidence was not), external 
post-decisional evidence did have a reliable effect on confidence 
(Fleming et al., 2018). Presumably, the correlational structure of post- 
versus pre-decision evidence determines whether sampling continues or 
not. 

5. Conclusion 

The current work quantified confidence within an evidence accu
mulation framework as the probability of being correct given the 
accumulated evidence up until that point. Both model and data showed 
that three key signatures of confidence depend on the point in time when 
confidence is queried. Finally, post-decision confidence reports were 
best explained by an evidence-based stopping rule. 
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Appendix A. Supplementary data 

All data and analysis code have been deposited online and can be 
freely accessed (https://github.com/kdesende/2020_Cognition_Desen 
der). 

Diagnostic confidence signatures with an evidence-based stopping 
rule 

Model predictions about the diagnostic confidence signatures for the 
delayed condition were quantified using a time-based stopping rule. 
Here, we report that these predictions were highly similar when using an 
evidence-based stopping rule instead. First, this model also predicted 
that confidence scales with coherence, F(4,225) = 84.43, p < .001, as 
well as the interaction between coherence and choice accuracy, F 
(4,225) = 232.31, p < .001, reflecting increasing confidence with 
coherence levels for correct trials (linear contrast: p < .001) and 
decreasing for error trials (linear contrast: p < .001). Second, this model 
also predicted a monotonic positive relation between confidence and 
mean accuracy, b = 0.06, t(129) = 20.42, p < .001. 
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