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Large-scale dynamics of perceptual decision
information across human cortex
Niklas Wilming 1✉, Peter R. Murphy 1, Florent Meyniel 2 & Tobias H. Donner 1,3,4,5✉

Perceptual decisions entail the accumulation of sensory evidence for a particular choice

towards an action plan. An influential framework holds that sensory cortical areas encode the

instantaneous sensory evidence and downstream, action-related regions accumulate this

evidence. The large-scale distribution of this computation across the cerebral cortex has

remained largely elusive. Here, we develop a regionally-specific magnetoencephalography

decoding approach to exhaustively map the dynamics of stimulus- and choice-specific signals

across the human cortical surface during a visual decision. Comparison with the evidence

accumulation dynamics inferred from behavior disentangles stimulus-dependent and endo-

genous components of choice-predictive activity across the visual cortical hierarchy. We find

such an endogenous component in early visual cortex (including V1), which is expressed in a

low (<20 Hz) frequency band and tracks, with delay, the build-up of choice-predictive activity

in (pre-) motor regions. Our results are consistent with choice- and frequency-specific

cortical feedback signaling during decision formation.
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A fundamental issue in neuroscience is to understand the
mechanisms underlying decisions about the state of the
sensory environment. Convergent progress in computa-

tional theory, behavioral modeling, and neurophysiological ana-
lysis has converged on an influential framework for perceptual
decisions: sensory evidence supporting a particular choice is
accumulated over time into an internal decision variable; in many
contexts, this decision variable is reflected in the motor plan to
report the corresponding choice1–4. Computational models based
on these notions perform well in fitting behavioral choice, reaction
times, and associated confidence, of different species in a variety of
behavioral task protocols1,4,5. Specifically, when the duration of
available perceptual evidence is controlled by the environment, the
sign of the decision variable at the end of the evidence sequence
determines choice, and its magnitude combined with elapsed
time6, determines the associated confidence.

The above class of models affords an intuitive interpretation of
neural signals that have been observed at different processing
stages of the cerebral cortex of several species. The sensory evi-
dence relevant for a given choice task is encoded by sensory
cortical neurons2. By contrast, neural correlates of accumulated
sensory evidence have been identified in the build-up of motor
preparatory activity in different regions of the rat7, monkey2,3,6,8,
and human cerebral cortex9–12. These results are in line with the
idea that sensory responses are fed into an integrator on their way
to associative and (pre-) motor cortical circuits2,13.

Yet, the large-scale cortical organization of perceptual decision
computations has remained elusive, for a number of reasons.
First, only few studies have assessed the dynamics of sensory and
choice-related neural signals across multiple cortical areas14–17.
Second, such large-scale neural dynamics have not been related
to the time course of evidence accumulation inferred from
behavior—which is, in turn, critical for their computational
interpretation18–20. Third, the above framework entails a purely
feedforward accumulation of sensory evidence across the cortical
sensory-motor pathways. In this view, decision-related neural
activity in sensory cortex exclusively reflects the feedforward
impact of sensory evidence on choice21,22. By contrast, the large-
scale network implementing the transformation from sensory
input to choice is equipped with powerful feedback connections
from association and (pre)-motor cortex to sensory cortex23,24. In
hierarchical circuit models of decision-making, these feedback
connections continuously propagate the evolving decision vari-
able from downstream regions to sensory regions19,20. As a
consequence, the choice-predictive activity observed in sensory
cortical areas should be a mixture of a stimulus-dependent
(feedforward) and an endogenous (feedback) component19,20.
Recent single-unit results from monkey visual cortex are con-
sistent with such decision-related feedback18,25, but the source of
this feedback remains unknown.

Identifying the neural implementation of perceptual decision-
making requires an integrated behavioral and large-scale phy-
siology approach. Controlled fluctuations in momentary sensory
input are instrumental for inferring the time course of evidence
accumulation from behavior, and for pinpointing the nature of
decision-related neural signals4,7,19,20. Such stimulus fluctuations
help un-mix stimulus-dependent and putative endogenous com-
ponents of choice-predictive neural activity18, within different
stages of the sensory cortical hierarchy.

Here, we develop such an integrated approach in the human
brain. We combine a visual choice task with behavioral analysis of
the underlying evidence accumulation dynamics and an atlas-
based, regionally specific magnetoencephalography (MEG)
decoding technique in humans. This approach enables tracking
the dynamics of (i) sensory evidence weighting on behavioral
choice, (ii) the encoding of the instantaneous sensory input and

its temporal integral, and (iii) build-up across of choice-predictive
activity. This illuminates the large-scale dynamics of perceptual
decision information across the mosaic of functional regions
spanning the cortical surface. We find an endogenous component
of choice-predictive activity in early visual cortex (including area
V1), which is expressed in a low (<20 Hz) frequency band and
tracks the build-up of choice-predictive activity in (pre-) motor
regions, with about 150 ms delay.

Results
Temporal profile of evidence weighting for behavioral choice.
Our task required participants (N= 15) to compare the mean
contrast of a so-called test stimulus with the contrast of a pre-
viously presented reference stimulus that was constant across
trials (Fig. 1a and “Methods”). The stimuli were circular gratings
spanning the entire projection screen (radius >10° of visual angle)
and expanded or contracted on a given trial (no changes of
direction within trials). The reference contrast was 50% on all
trials. The test had a mean contrast that was stronger or weaker
than the reference contrast (stimulus category randomly chosen
per trial; mean continuously adjusted to 75% accuracy through a
staircase procedure). Critically, the test was made up of a stream
of ten samples (100 ms each) with contrast levels that fluctuated
around the mean contrast for the trial, requiring participants to
accumulate the fluctuating contrast values over time in order to
compute their mean. The test stimulus offset prompted partici-
pants to deliver their behavioral report by button press. They
responded with the left or right hand to report “test is stronger
than reference” (henceforth called stronger) choices, or “test is
weaker than references” (weaker) choices, and with the index or
middle finger to report that their confidence about the accuracy of
that choice was “high” or “low”, respectively.

A number of observations indicate that participants indeed
accumulated contrast information across the complete test
stimulus interval (i.e., all ten samples, Fig. 1b, c and Supplemen-
tary Fig. 1). First, participants’ choices were reliably predicted by
mean test contrast in all participants (mean prediction accuracy:
76%, range 61–81%; stratified 5-fold cross-validated logistic
regression), and their confidence judgments lawfully depended
on average test contrast, exhibiting signatures established in other
tasks (Supplementary Fig. 1).

Second, contrast information at all sample positions had a
significant leverage on behavior (Fig. 1b, c). Contrast fluctuations
affected both choice (Fig. 1b; compare curves for stronger vs.
weaker choices), as well as confidence reports (high vs. low, for
the same choice). We used psychophysical reverse correla-
tion18,26–28 to quantify the time course of the weighting of
contrast information on choice. The evidence weighting time
courses, so-called psychophysical kernels, were computed as the
area under curve (AUC) of the receiver-operating characteristic
relating a given contrast level to the participant’s choice (ref. 29;
see “Methods” for details). The AUC ranged between 0 and 1,
whereby values of 0.5 indicated chance level. AUC values for all
sample positions were significantly >0.5 (Fig. 1c), indicating that
sample contrasts stronger than reference tended to be followed by
stronger choices (conversely for AUC < 0.5). Critically, however,
the impact of contrast samples on choice declined over time
across the test stimulus interval (Fig. 1c; slope of psychophysical
kernel: −0.009, t(14)=−5.3, p= 0.0001). This is consistent with
results from a range of other perceptual choice tasks in humans
and monkeys26–28,30, and provides a reference for interpreting the
dynamics of decision-related neural activity below.

Dynamics of encoding of sensory input across cortex. We
reconstructed the dynamics of sensory and decision-related
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activity in many cortical regions of interest (ROIs, “Methods”).
We focused on a set of functional magnetic resonance imaging
(fMRI)-defined regions that are implicated in the visuo-motor
decision process for detailed characterization of the properties of
the physiological signals reflecting sensory input and ensuing
decision (Fig. 2 and “Methods”). This set consisted of multiple
topographical maps of the visual field (see “Methods” for area
labels) and three regions exhibiting hand movement-specific
lateralization: anterior intraparietal sulcus (aIPS), the junction of
the IPS and postcentral sulcus (IPS/PostCeS), and the hand-
specific sub-region of primary motor cortex (henceforth called
M1-hand). In complementary analyses, we tracked sensory and
decision-related activity (through decoding of spectral and spatial
patterns) in a set of 180 regions per hemisphere covering the
entire cortex (Fig. 3 and “Methods”).

Previous work has shown that population activity in visual cortex
scales monotonically with stimulus contrast in a high-frequency
range, including the gamma-band (about 40–70 Hz)31–33. Corre-
spondingly, the power in a narrow-band gamma-band (45–65 Hz),
as well as a broader high-frequency band (65 to about 120Hz, high-
frequency), was elevated relative to pre-stimulus baseline (Supple-
mentary Fig. 2a) throughout stimulus presentation, in all visual field
maps, but not in the movement-selective regions (Fig. 2a and
Supplementary Fig. 2b). By contrast, alpha-/beta-band (about 8–36
Hz) activity was suppressed during the test stimulus in all areas,
including the movement-selective ones (Fig. 2a and Supplementary
Fig. 2b). The power responses in the gamma- and high-frequency-
bands, but not in alpha- and beta-bands, also differentiated between
trials with stronger and weaker test contrast (Fig. 2b and
Supplementary Fig. 2c), thus reflecting the two mean stimulus
categories judged by the participants.

Power responses in the gamma- and high-frequency-bands
decayed monotonically during test stimulus presentation (Sup-
plementary Fig. 2b, c), with a slope that depended on the
variance of sample-to-sample contrast fluctuations (Supplemen-
tary Fig. 3; V1: F(2,28)= 3.92, p= 0.03, one-way ANOVA). This
observation is in line with an attenuating effect of contrast
adaptation on visual cortical responses observed in previous
work34. Critically, this decay of visual cortical responses, at least

in part, explained the decay in evidence sensitivity throughout
the trial that was evident in behavior: the individual time courses
of gamma- and high-frequency-band power were strongly
correlated with the time courses of psychophysical kernels
(Supplementary Fig. 4).

Responses in the gamma- and high-frequency bands also
specifically tracked the rapid sample-to-sample contrast fluctua-
tions throughout the trial (Fig. 3). We trained pattern classifiers
to decode sample contrast from local spectral patterns (power
values from 1 to 145 Hz) and correlated decoded with physical
sample contrasts (“Methods”). Contrast decoding profiles in V1
for consecutive samples peaked about 190 ms after sample onset
(Fig. 3a). The convex hull curve of peak decoding values for
individual contrast samples, a summary measure of decoding
performance across samples, was significantly better than chance
throughout decision formation (Fig. 3b, orange). Just like the
gamma-band and high-frequency responses, the precision of V1
contrast decoding also decreased monotonically from the first to
the ninth sample (Fig. 3b left), tracking the decay of overall
gamma-band and high-frequency responses (Supplementary
Fig. 5). A complementary encoding analysis (using frequency-
resolved regressions assuming predominantly linear encoding of
contrast in MEG power, see “Methods” and “Discussion”),
confirmed that the gamma-band contributed most to the
contrast decoding in V1: regression weights were strongest in
the gamma-band and significant only for the gamma- and high-
frequency-bands (Fig. 3c). In sum, neural population responses
in V1 and extrastriate visual cortical areas conveyed detailed
information about the sample-to-sample contrast fluctuations,
which was specifically contained in the gamma- and high-
frequency-bands.

Dynamics of encoding of decision variable and choice across
cortex. When choices are reported with left- or right-hand
movements (as in our task), the hemispheric lateralization of
activity in motor and parietal cortical regions encodes specific
choices9,35,36. This activity is frequency-specific and builds up
during decision formation9,10, evident in the power lateralization
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Fig. 1 Behavioral task and temporal accumulation of sensory input for decision-making. a Schematic of task events during example trial. Each trial started
with a reference stimulus, a circular moving (expanding or contracting) grating with constant contrast (50% in all trials), followed (1–1.5 s delay) by a test
stimulus. The test was another circular moving grating made up of ten consecutive samples of fluctuating contrast. Sample contrasts were drawn from a
normal distribution (“Methods”). The task was to indicate if the mean test contrast (averaged across samples) was stronger or weaker than the reference
contrast. Auditory feedback (low or high tone) was provided after another variable delay (0–1.5 s). Gratings depicted here have lower spatial frequency
than in the experiment for visualization purposes. b Impact of contrast fluctuations on behavior. Top, contrast fluctuations around the sample mean (i.e.,
expected contrast on sample s) sorted by behavioral response (choice and confidence judgment). Bottom, psychophysical kernel quantifying impact
of trial-by-trial contrast fluctuations on choice, as a function of sample position, expressed as deviation of area under the ROC curve from chance level
(AUC= 0.5, see “Methods”). Data are represented as mean (n= 15 subjects, lines) and ±SEM (shaded areas). Black horizontal bar, p < 0.05 (FDR-
corrected two-sided t-test of AUC different from 0.5). Source data are provided as a Source Data file.
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(contra- vs. ipsilateral to effector choice) of M1-hand in our data
(Supplementary Fig. 6a). Correspondingly, decoders trained on
the spectral power profiles from both hemispheres revealed
choice-predictive build-up activity in M1-hand, as well as IPS/
PostCeS (Fig. 2c). Choice decoding in these regions ramped up
more quickly before choices associated with high than with low
confidence (Supplementary Fig. 6b).

Choice-predictive activity in IPS/PostCeS was partially inde-
pendent of M1-hand: When eliminating signal leakage by
removing M1-hand power from IPS/PostCeS power for each
frequency (via linear regression), the residual IPS/PostCeS activity
still yielded significant choice decoding (AUC= 0.53, time= 1.1 s;
t(14)= 2.01, p= 0.032). Movement-specific activity in IPS/
PostCeS has previously been observed with fMRI during
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Fig. 2 Task-related neural dynamics across the visuo-motor cortical pathway. a Time-frequency representations (TFRs) of group average power change
relative to pre-stimulus baseline (−250 to 0ms relative to test stimulus), for several cortical regions along the cortical sensory-motor axis. Top left inset,
colors of areas depicted on cortical surface. For each area, data are shown time-locked to test stimulus-onset in the left partition of each TFR and time-
locked to the choice, in the right partition (partitions separated by white spacing). Data are represented as mean (n= 15, color code). Black contour, p <
0.05 (cluster-based, two-sided permutation test against 0). b As a, but for power differences between stronger and weaker test stimulus categories.
c Time courses of regionally specific decoding of choices (see “Methods”), separately for the two test stimulus categories. Data are represented as mean
(n= 15 subjects, lines) and 95% highest density interval (shaded areas) of posterior distributions over group average decoding accuracies. Horizontal bars,
p < 0.05 (cluster-based permutation test: AUC different from 0.5, n= 15 subjects). Source data are provided as a Source Data file.
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perceptual choice36, but the build-up of activity in this region
during evidence accumulation, prior to overt behavioral choice,
has not yet been established.

The above analyses focused on a set of cortical regions, in
which the format of choice-predictive activity in terms of motor
preparatory activity is well understood (see above and Supple-
mentary Fig. 2). Two complementary analyses applied the same
choice decoding approach as for Fig. 2c to 180 regions spanning
the entire cortical sheet (Supplementary Fig. 7a), as well as an
alternative choice decoding approach (using more fine-grained
spatial information as well as signal phase and amplitude,
“Methods”) to a set of pre-selected frontal regions based on
previous work (Supplementary Fig. 7b). This showed the
strongest choice-predictive activity in motor cortex (M1 and
PMd) supporting our focus on action-related regions (see
Discussion).

Activity in motor and parietal cortex (M1 and IPS/PostCeS,
respectively) tracked not only the evolving plan to act (choice-
predictive activity), but also the ongoing computation of the
decision-relevant quantity: the mean of contrast samples. We
trained pattern classifiers to decode the running mean of contrast

samples at a specific latency after sample onset (dubbed
accumulated contrast in Fig. 3; see “Methods”). The correlation
between the decoded and actual accumulated (running mean of)
contrast quantified the precision of accumulated contrast read-
out from activity patterns (magenta lines in Fig. 3b). Decoding
values late in the trial (after gray box) were likely affected by the
hand movement execution, but movement execution could not
explain decoding before 1.1 s after stimulus onset: Our analyses
excluded reaction times faster than 1.225 s and used a maximum
time window of 250 ms for spectral estimation; thus, 1.1 s
corresponded to the fastest reaction time minus half the spectral
estimation time window. Also note that the observed decoding of
accumulated contrast should be considered a lower bound on the
expression of the hypothetical decision variable in cortex: the
analysis assumed perfect accumulation of all contrast samples
across time, so any deviation from this assumption (e.g., due to
reduction in evidence sensitivity, Fig. 1b) reduced decoding
precision.

Mapping the sensitivity of neural responses to instantaneous or
accumulated contrast (average of convex hulls across the interval
0.4 to 1.1 s, gray box in Fig. 3b) across the cortical surface also
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Fig. 3 Decoding of sample contrast and accumulated contrast across cortex. a Time courses of frequency-based (range: 1–145 Hz; V1: averaged across
hemispheres, IPS/PostCeS/M1-hand: lateralized power values) decoding of single-trial contrast values, separately for each sample position, from V1 (left),
IPS/PostCeS (middle) and M1-hand (right) power responses. Decoding precision is expressed as cross-validated Pearson correlation coefficient between
decoded and presented contrast (see “Methods”). Data are represented as mean (n= 15 subjects, lines). b Decoding of sample contrast and of running
mean of contrast. Orange lines, convex hull across decoding peaks for individual samples in panel a. Magenta lines, convex hull across decoding time
courses for the running means of sample contrast values up to sample iϵ{1,…,10}. This reflects the neural representation of the decision-relevant quantity in
the task. Data are represented as mean (n= 15 subjects, lines) and ±SEM (shaded areas). Horizonal bar: p < 0.05 (cluster-based permutation test of
decoding of sample contrast vs. decoding of accumulated contrast). c Encoding of individual contrast samples as a function of frequency. Data are
represented as mean beta weights (n= 15 subjects, color code). Black contour, p < 0.05 (cluster-based, two-sided permutation test). d Group average
decoding precision (n= 15 subjects, convex hull averaged across gray shaded areas in B) for all ROIs: single-contrast samples (left), accumulated contrast
(center), and their difference (right). Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18826-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5109 | https://doi.org/10.1038/s41467-020-18826-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


showed strongest decoding of individual contrast samples for
early and intermediate visual cortical areas (with peak reliability
in V1), whereas decoding of accumulated contrast prevailed in
the same action-related regions of parietal and (pre-)motor cortex
(Fig. 3d, e), in which build-up activity also predicted behavioral
choice (compare Supplementary Fig. 7a). Overall, the functional
properties of IPS/PostCeS, PMd, and M1 activity resembled those
of monkey and rodent parietal and frontal cortical regions during
similar perceptual choice tasks2,7,8. Mapping the dynamics of
stimulus- and choice-encoding across the cortical surface yielded
results in line with the idea that the action plan encoded in these
parietal and frontal cortical regions was computed by accumulat-
ing the contrast samples over time.

Untangling decision-related activity in visual cortex. We next
sought to investigate the dynamics of choice-predictive activity in
more detail for visual cortical areas. The temporal profile of
choice-predictive activity in sensory cortex, combined with the
temporal profile of sensory evidence weighting (i.e., psychophy-
sical kernel), can help reverse-engineer decision-related interac-
tions between processing stages involved in evidence encoding and
evidence accumulation, respectively19,20. This choice-predictive

activity refers to the trial-to-trial correlation between neural-
activity fluctuations within a stimulus category and behavioral
choice. It is commonly dubbed as choice probability for single-
unit activity, yielding small but significant values for early visual
cortex18,21,22,37. We quantified this activity in the same way as
psychophysical kernels, but replacing sample contrast with the
band-limited power in different visual cortical areas (“Methods”).
While this analysis is analogous to the one used to calculate single-
unit choice probabilities, we refer to the resulting measure as V1
kernels to highlight the difference to single-unit spiking activity
(see “Discussion”).

Visual cortical gamma-band responses encoded the fine-
grained contrast information (Figs. 2b and 3) that subjects used
for solving the task (Fig. 1 and Supplementary Fig. 1). We thus
reasoned that choice-predictive fluctuations of gamma-band
activity should mirror the impact of visual contrast information
on choice inferred from behavior (Fig. 1C). Indeed, V1 gamma-
band kernels (40–75 Hz, range based on Fig. 2b) were larger than
zero (i.e., AUC > 0.5) early in the trial (Fig. 4a, left, overall kernels
in blue, p < 0.05 for samples 1 and 2 only), but neither during the
baseline interval before the test stimulus (Fig. 4b, left; t(14)=
−1.24, p= 0.24), nor late in the trial (Fig. 4a). V1 gamma-band
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a Source Data file.
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kernels decayed over time (group average slope: −0.017, t(14)=
−3.1, p= 0.007) just like the psychophysical kernels, yielding a
highly significant temporal correlation (Fig. 4c, left; group average
correlation: r= 0.45).

In circuit models with feedback from the accumulation stage,
choice probabilities in sensory cortex reflect a mixture of
feedforward and feedback components19,20. These components
can be disentangled by removing the contribution of stimulus
fluctuations to neural activity18,19. If choice-predictive activity
fluctuations reflect the impact of external stimulus fluctuations on
choice, removing the stimulus-induced fluctuations should reduce
(or even cancel) the correlation between neural activity and
choice19. This is exactly what we found for V1 gamma-band
activity: The residual kernels (computed after removing effect of
contrast fluctuations via linear regression, “Methods”) did not
differ from zero (green in Fig. 4a, left; p > 0.05 for all sample
positions) and overall kernels (blue) were consistently larger than
the residual kernels (green) for all sample positions (Fig. 4a, left,
black bar).

V1 choice-predictive activity in the low-frequency range (0–20
Hz) was markedly different from the choice-predictive activity in
V1 gamma-band (Fig. 4a, right, blue). Trial-to-trial fluctuations
in V1 low-frequency power also predicted choice variability, but
only for later samples (Fig. 4a), and not during the pre-stimulus
baseline (Fig. 4b; right; t(14)=−1.32, p= 0.21). Accordingly, the
time courses of V1 low-frequency kernels and psychophysical
kernels were negatively correlated (Fig. 4c, right; group average
correlation: r=−0.23; difference to gamma-band: t(14)= 5.88,
p= 0.00005). What is more, removing contrast-driven fluctua-
tions from low-frequency power did not change the magnitude
and shape of V1 low-frequency kernels (Fig. 4a, right, green).
Thus, the choice-predictive fluctuations in low-frequency power
resulted from endogenous sources, rather than from the external
stimulus. Similar results were found across the visual cortical
hierarchy (Supplementary Fig. 8). In sum, choice-predictive
fluctuations of low-frequency and gamma-band activity disso-
ciated in terms of both their temporal profiles (primacy vs.
recency) and sources (external stimulus vs. internal).

To delineate the spectral profiles of the above-described effects,
we also analyzed choice-predictive activity across a broad
frequency range as a function of frequency. Indeed, overall
choice-predictive activity (collapsed across samples) was confined
to the low-frequency and gamma-bands (Fig. 4d, left), and the
kernel slope (i.e., change over time) showed an increase in V1
kernel magnitude over sample positions, specifically for the
alpha-band (around 10 Hz, center frequency for computation of
low-frequency kernels) and a decrease in the gamma-band
(Fig. 4d, right). Thus, the functional dissociation between
different components of decision-related V1-activity was
expressed in clearly delineated frequency bands.

While having dissociated functional properties, endogenous
and stimulus-dependent choice-predictive activity components,
in low-frequency and gamma-bands, respectively, might interact,
somewhere in the visual cortical hierarchy. To test this possibility,
we jointly regressed power in these two bands on behavioral
choice (logistic regression, “Methods”). We quantified the
decaying vs. increasing temporal profiles for both bands, as the
asymmetry of beta weights between first and second halves of
the test stimulus interval. In line with the opposite kernel slopes
in our more fine-grained analysis from Fig. 4d, we found opposite
temporal profiles of choice-prediction regression coefficients in
both bands (Supplementary Fig. 9). Critically, an interaction term
included in the regression was negative for the second half of
the decision interval in V2–V4 (Fig. 4e). There was a similar
trend in V1: t(14)=−1.6, p= 0.127). This suggests that low-
frequency activity suppressed the impact of early visual cortical

gamma-band responses on choice towards the end of decision
formation, when the choice-predictive low-frequency activity in
visual cortex was particularly strong.

Coupled dynamics of decision-related neural activity. The
choice-predictive activity evident in V1 low-frequency power
might reflect recurrent dynamics within visual cortex and/or
feedback of decision-related signals from downstream regions
outside of the visual system19,20. The build-up of the group
average time course of V1 low-frequency kernels (Fig. 4a, right)
resembled the build-up of choice-predictive activity in down-
stream regions (Fig. 2c), consistent with the feedback scenario. To
quantify this relationship, at the level of individual subjects, we
re-computed visual cortical low-frequency kernels at the same
temporal resolution as downstream choice decoding signals
(Supplementary Fig. 10) and correlated the time courses, for a
range of different time lags (see Fig. 5, top left inset and
“Methods”). For all early visual field maps (V1 and V2–V4), the
group average cross-correlations were robust for M1 leading (but
not following) visual cortex (Fig. 5, black bars) with a peak lag of
150 ms.

The positive, non-zero peak lags are too large to be explained
by signal processing confounds (Supplementary Fig. 11 and
Supplementary Discussion), and they argue against signal leakage
as the source of the correlation. As a reference for leakage, we
quantified the zero-lag correlation between choice-predictive
activity and low-frequency kernel, now both taken from M1
(Fig. 5, green data point on top of M1-V1). This so-called
reference correlation constituted an upper bound of the leakage
that might have been present in the estimates of areas other than
M1, thus overestimating the true leakage component present in
the visual field map data. Despite the conservative nature of this
reference, the cross-correlations with visual cortex at positive lags
were significantly larger for several field maps including V2–V4
(Fig. 5, colored bars). These results indicate that the cross-
correlations for visual field maps reflect genuine coupling
between choice-predictive neural signals in motor and visual
cortex.

The positive, non-zero peak lags observed here are consistent
with feedback but do not necessarily reflect direct (mono-
synaptic) interactions between choice-predictive activity in (pre-)
motor regions and the visual cortical areas (other areas might
have relayed the signals). Our results also do not rule out a
contribution of interactions within visual cortex to the choice-
predictive low-frequency fluctuations in V1 and other visual
cortical areas. Even so, our results show that decision-related
visual cortical activity in the low-frequency closely tracked the
build-up of decision-related activity in downstream brain regions
involved in action preparation.

Discussion
The neurobiology of perceptual decision-making has witnessed
considerable advances in the integration between computational
theory and physiological and psychophysical experimentation1,2.
The field’s dominant framework entails the sustained accumula-
tion of transient sensory signals encoded in sensory cortex on the
way to association and motor cortex, which is transformed into
an action plan (but see refs. 16,38,39). This framework has lacked a
detailed characterization of the above-described computation
across the large mosaic of interconnected regions of the primate
cortex and ignored the role of abundant feedback connections
from association and (pre-)motor cortical regions to sensory
cortex.

Here, we developed an approach for tracking the dynamics of
(instantaneous and accumulated) stimulus- and choice-related
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information across the human cerebral cortex. In a task that
entailed the accumulation of visual contrast information over
time, we found a predominant involvement of early visual cortex
in evidence encoding and a predominant involvement of parietal,
as well as (pre-) motor regions in evidence accumulation and
action planning. We also found a spectral multiplexing of
stimulus-dependent and endogenous components of choice-
predictive activity fluctuations in visual cortical population
activity: The stimulus-dependent component was expressed in the
gamma-band, and the endogenous component in low (<20 Hz)
frequencies, peaking in the alpha-band. The latter tracked the
build-up of choice-information in the downstream regions
involved in action planning.

Our current insights hinged on the ability to track the time
course of the encoding of sensory evidence, accumulated evi-
dence, and action plan, from each of a large set of well-delineated
cortical regions. To this end, we combined atlas-based MEG
source reconstruction with a multivariate pattern classification
approach that was based on the spectro-spatial patterns of local
activity within each region. Previous electrocorticography work
on brain-computer interfaces has highlighted such spectro-spatial
patterns as useful features for pattern classification40. Our current
approach differs from previous decoding approaches for human
fMRI and MEG data (Supplementary Discussion) and provides
the opportunity to track large-scale information dynamics across
cortical areas, analogous to recent animal work14,15,17,41. In
contrast to these large-scale physiology studies in animals, how-
ever, we here quantified the associations between regionally

specific information dynamics and the psychophysically inferred
time course of evidence accumulation. This, in turn, constrained
their functional interpretation.

Several analyses suggest that the choice-related build-up
activity in our task was primarily expressed in the format of
motor preparatory activity, rather than in a more abstract format
(Supplementary Discussion). This is in line with a large body of
work in animals1,2,7,8 and with the fact that the decision variable
could, by design, be mapped directly onto an action plan in our
task. Even so, it is possible that M1 hand area and IPS/PostCeS
only reflected the outcome of an evidence accumulation process
that took place elsewhere (e.g., the striatum13), which we failed to
detect with our approach.

Our decoding approach was agnostic about the nature and
specifics of the neural code used for solving the task42. We
assume that the decision process reads out the spiking output of
visual cortical activity, rather than the amplitude of local field
potential fluctuations, including oscillations in the gamma-
band32. V1 spiking activity also scales with contrast in a mono-
tonic fashion, and is generally closely coupled to local field
potentials (and the resulting MEG activity) in the gamma-band33.
However, both signals can dissociate43. For example, power and
peak frequency scale approximately linearly with contrast across
the full range31,32, whereas V1 spiking saturates at high con-
trasts44. By exploiting the full spectral (and spatial) pattern of
power changes, both peak shifts and amplitude changes could be
used for visual contrast decoding, rendering our approach generic
and robust.
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Limitations of our analyses, as well as possible, genuine dis-
sociations between the decoded signal and the decision-relevant
neural code, may have caused an underestimation of the true link
between visual cortical activity and behavioral choice. Specifically,
endogenous (stimulus-independent) fluctuations in the neural
stimulus-representation that is read out in the decision should
impact behavioral choice42. However, we did not detect such a
choice-predictive effect in the residual V1 gamma-band activity.
Our analysis attempted to isolate these endogenous fluctuations
by removing stimulus-related trial-to-trial variations in gamma-
band activity via linear regression. This was based on the
assumptions that (i) MEG power scaled approximately linearly
with contrast and (ii) stimulus-related and endogenous compo-
nents superimpose linearly. Both assumptions are simplified:
contrast response functions in MEG power may not be perfectly
linear in all individuals (see ref. 45 for demonstration for motion
coherence response functions), and stimulus- and choice-related
cortical signals may interact multiplicatively46. Consequently, the
absence of a choice-predictive component in residual V1 gamma-
band activity observed in our analysis may reflect technical lim-
itations, such as a failure of our linear approach to isolate the
endogenous fluctuations and/or the low signal-to-noise ratio of
MEG gamma-band activity33. Alternatively, the absence of this
effect may be due to gamma-band activity being only an indirect
proxy of the neural code used for the decision computation.

Even so, our results highlight the utility of decomposing the
local field potential into different frequency bands for disen-
tangling distinct components of cortical computation. The results
also add to the mounting evidence for the co-existence of
stimulus-related and endogenous components in the choice-
predictive activity of visual cortex18,19, and they identify phy-
siological markers, which future studies could also assess in the
frequency-specific local field potential activity from invasive
animal data as well from hierarchical cortical circuit models.
While spectral analysis helped to disentangle the stimulus-related
and endogenous component of activity, we do not conceptualize
these two frequency-specific signals as independent entities.
There is abundant evidence for interactions between power in
different frequency bands, including alpha and gamma, in the
cortex33,47. For the choice-predictive power components assessed
here, we found a negative multiplicative interaction between the
impact of low-frequency and gamma-band activity on choice in
areas V2–V4 (Fig. 4f). These choice-specific cross-frequency
interactions should be further characterized by means of causal
interventions.

Our findings add to the realization that adaptation phenomena
in sensory cortex likely contribute to decision-making4,16.
Attenuation of sensory responses is a well-established phenom-
enon in various behavioral states, which is often explained by
local circuit mechanisms34,48,49. Yet, most models of perceptual
choice have ignored adaptation. In our task, we found a pro-
gressive attenuation of visual cortical gamma-band responses,
dependent on sample variance. This progressive attenuation
predicted the individual reduction in the impact of evidence on
choice evident in psychophysical kernels. Such primacy in psy-
chophysical kernels has often been explained by bounded evi-
dence accumulation at the decision stage26,28. In line with ref. 16

(their Fig. 2e), our results indicate that the attenuation of neural
responses at sensory processing stages can account, at least in
part, for a decrease in evidence sensitivity over time. Note that
both mechanisms, bounded accumulation and adaptation, are not
mutually exclusive, but might, in fact, interact in the presence of
decision feedback.

The observation that stimulus-dependent and endogenous
components of decision-related activity in visual cortex were
expressed in the gamma-band vs. the low-frequency (alpha) band,

respectively, resonates with an emerging view of the role of the
gamma- and alpha-bands in message passing across the cortical
hierarchy. In this view, feedforward and feedback information
flow through the cortical hierarchy is mediated by layer-specific
pathways communicating in these two spectral channels,
respectively24,50–55. Those studies have quantified the properties
of physiological local field potentials recorded from different
areas (e.g., time-lagged correlations between regions or laminar
activity profiles within regions), without a link to specific beha-
viors. The functions of these cortical feedforward and feedback
pathways have been conceptualized in the context of attention56

and predictive coding52,57, but not the accumulation of evidence
towards a choice. Evidence accumulation, the essence of dynamic
belief updating, may be a useful framework for advancing and
testing theories of spectral channels for inference. Our current
insights suggest that the spectral profiles of the associated local
field potential activity (our MEG source estimates) help disen-
tangle the feedforward and feedback components of decision-
related signals in the cortical hierarchy. Future work should assess
if, and to what extent, the contribution of gamma-band activity to
the feedforward signaling of decision-relevant sensory evidences
generalizes to stimuli beyond contrast gratings, which induce
strong, narrow-band gamma oscillations (see above). Recent
results from a visual evidence accumulation task entailing small
checkerboard patches flashed at different positions suggest they
do58.

Methods
Participants. Fifteen participants (8 female, 7 male) participated in the experiment.
All had normal or corrected to normal vision and no history or indications of
psychological or neurological disorders. The experiment was approved by the
ethics committee of the Medical Association Hamburg. Participants gave written
and informed consent. Participants were paid 10 € per hour of participation. The
sample size and trial number per participant (see next section) was chosen based
on previous work with similar designs and neurophysiological9,45 and psycho-
physical27 measures of decision-making.

Task and procedure. Each trial of the task consisted of the following sequence of
events (Fig. 1a). First, a reference stimulus (grating of fixed contrast at 0.5) was
displayed for 400 ms. After a variable delay (uniform between 1 and 1.5 s) ten
successive samples of variable contrasts (see below) were shown (each 100 ms);
together these ten samples made up the test stimulus, the mean contrast of which
participants should compare with the reference (i.e., forced choice report: “test is
stronger than reference” or “test is weaker than reference”).

The offset of the last sample marked the beginning of the response period for
participants. Participants reported their binary choice, and their confidence about
the correctness of that choice (high vs. low) simultaneously, by pressing one of four
different buttons, whereby the two hands were always mapped to different choices
(choice-to-hand mapping counterbalanced across participants). The index and ring
fingers of each hand were then used to report confidence (again mapping
counterbalanced across participants). During MEG sessions, participants used two
response pads, one for each hand. During the training sessions participants, used
the same stimulus-response mapping, but pressed keys on a computer keyboard.
After a participant’s response and a consecutive variable delay between 0 and 1.5 s
auditory feedback was given (250 ms duration). A low tone indicated a wrong
answer and a high tone indicated a correct answer.

The ten consecutive contrast samples were draws from a normal distribution
centered on a participants 75% accuracy contrast level. This threshold was
determined by running a QUEST staircase59 continuously in the background. The
standard deviation of the normal distribution was chosen randomly from [0.05, 0.1,
0.15] from trial to trial. After each set of 100 trials participants could take a short
break self-timed break. After the third block, participants took a longer break
lasting at least five minutes.

Each participant completed five sessions, whereby each session consisted out of
five blocks à 500 trials, lasting approximately 60 min. The first session was a
training session that took place in a behavioral laboratory and was used to expose
participants to the task and to calibrate their performance to 75% correct. The
subsequent four sessions were experimental recording sessions that took place in
the MEG laboratory and yielded the data analyzed in this paper. Experimental
sessions were spread out over several days and were typically completed within
10 days. We also collected a structural MRI for each participant in a separate
session, unless an MRI scan was available from previous experiments.

Based on previous work9,27,45, we estimated that four main experimental
sessions per participant would be necessary for obtaining robust
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neurophysiological measures of decision-making. Thus, data were collapsed across
all experimental sessions, and no replication was attempted in this study.

Stimuli. We used expanding or contracting circular gratings similar to the stimuli
from Michalareas51. The intensity a of a given pixel (x,y) was given by computing a
blending value for each pixel:

a x;yð Þ ¼ 1
2 þ 1

2 sin
d x;yð Þ�s
2rπ

� �
; ð1Þ

where d(x,y) was the distance of pixel (x, y) to the center of the screen and r= 3/4°
determined the spatial frequency of the grating. Varying s over frames yielded
expanding or contracting gratings, respectively. We varied s such that the grating
moved with a speed of 4/3° s−1. On each trial, the grating either expanded or
contracted, but never changed direction. To obtain a final color value we used a(x,y)
to blend two grayscale colors that had the desired contrast:

l x;yð Þ ¼ a x;yð Þ 0:5� c
2

� �þ 1� a x;yð Þ
� �

0:5þ c
2

� �
; ð2Þ

where c was the desired contrast. We furthermore set an inner annulus with a
radius of 1.5° to uniform gray. Gratings had a generative radius of 12.5°, but were
truncated by the vertical screen border at a radius of 11.3°. The contrast of the
reference grating was always set to 0.5, while the contrast of the test stimulus varied
and changed every 100 ms, as controlled by the staircase procedure (see above).

Stimuli were generated using Psychtoolbox 3 for Matlab. They were back-
projected on a transparent screen using a Sanyo PCL-XP51 projector with a
resolution of 1920 × 1080 at 60 Hz. The luminance profile was linearized by
measuring and correcting for the systems gamma curve. A doubling of contrast
values, therefore, also produced a doubling of luminance differences. During the
first training session stimuli were presented on a VIEWPixx monitor with the same
resolution and refresh rate (also linearized).

Data acquisition. We used a CTF MEG system with 275 axial gradiometer sensors
and recorded at 1200 Hz. Recordings took place in a dimly lit magnetically shielded
room. We concurrently collected eye-position data with a SR-Research EyeLink
1000 eye-tracker (1000 Hz). We continuously monitored head position by using
three fiducial coils. After seating the participant in the MEG chair, we created and
stored a template head position. At the beginning of each following session and
after each block we guided participants back into this template position. We used
Ag/AgCl electrodes to measure ECG and vertical and horizontal EOG.

Evaluation of choice and confidence dependence on contrast. We used a
logistic regression to evaluate whether participants exploited different contrast
samples for their choices and confidence judgments. We fit the following logistic
regression to predict choices from contrast values:

ytrl ¼ logistic
P

i2 1::10f g
βictrl;i þ β0

" #
; ð3Þ

where ytrl was the choice in trial trl and ctrl,i was the contrast value of sample i in
the same trial. We evaluated the accuracy of this fit with fivefold cross-validation.
All available trials from one subject were split into five folds and we used each fold
as test set once and all remaining folds for weight estimation. We carried out cross-
validation per subject and then averaged across folds and subjects. Since we titrated
participants’ accuracy to 75% correct, we also expected that the accuracy of this
logistic regression is bounded close to 75% correct. We also evaluated whether
confidence judgments were based on contrast. To this end, we fit a similar logistic
regression, but this time predicted confidence judgments for each response sepa-
rately. We again evaluated the accuracy of this logistic regression with fivefold
cross-validation.

Trial categories for the current task. The computation of psychophysical and
neural-activity kernels described below required sorting trials into four categories
defined by a unique combination of the physical stimulus category (i.e., mean
contrast of test stimulus stronger or weaker than reference) and the participant’s
perceptual choice (stronger or weaker). We defined these four categories based on
signal detection-theory29, as follows. Hits and misses: stronger and weaker choices,
respectively, for trials in which the physical test stimulus was stronger than the
reference; false alarms and correct rejects: stronger and weaker choices, respec-
tively, for trials in which the physical test stimulus was weaker than the reference.

Computation of psychophysical kernels. With the term psychophysical kernel,
we refer to the time course of the correlation between trial-to-trial fluctuations in
stimulus sample contrast and the participant’s behavioral choice, after factoring out
the physical stimulus category (i.e., mean test contrast stronger or weaker than
reference). Psychophysical kernels were computed by comparing single-trial
sample contrast values at a given sample position, between both behavioral choices,
within a given stimulus category (test contrast stronger or weaker than reference).
To this end, we computed the receiver-operator-characteristic curve (ROC),
separately for each stimulus category and sample position, and from this the area
under the ROC curve. The resulting AUC values (range: 0–1) quantified the

predictive power of contrast fluctuations around their mean level within a stimulus
category for choice. AUC values of 0.5 indicated that contrast fluctuations did not
differ between choices. AUC values >0.5 indicated that larger contrast values
tended to be followed by stronger choices (with AUC= 1 indicating perfect
separation of contrast values between choices), and AUC values <0.5 indicated that
larger contrast values tended to be followed by weaker choices. We computed
separate AUC time courses by comparing (i) hits and misses and (ii) false alarms
and correct rejects. The resulting two AUC time courses were averaged, yielding
the single psychophysical kernel shown in Fig. 1c.

Analysis and source reconstruction of MEG data. We used beamforming to
reconstruct the sources of activity observed at the MEG sensor level. First, we
automatically labeled artifacts in raw MEG data by detecting blinks, muscle arti-
facts, sensor jumps and cars passing by in the vicinity of the building. Blinks were
detected based on concurrently recorded eye-movement signals (SR-Research
EyeLink 1000). Sensor jumps were detected by convolving each sensor with a filter
designed to detect large sudden jumps and subsequently by looking for outliers in
the filter response. Muscle and environmental artefacts were detected by filtering
each channel in the 100–140 Hz or <1 Hz range and by detecting outliers that
occurred simultaneously in many channels. To remove power line noise, we
applied a notch filter. In a final step, we epoched data, downsampled to 600 Hz and
discarded all epochs that contained artifacts.

We computed time-frequency representations (TFRs) of single-trial data by
using a multi-taper method. For low frequencies (1–9 Hz in steps of 1 Hz), we used
a window length of 0.25 s (frequency smoothing of 8 Hz). For high frequencies
(10–150 Hz in steps of 5 Hz), we used a window length of 0.1 s (20 Hz frequency
smoothing).

We used linearly constrained minimum variance (LCMV) beamforming to
estimate activity time courses at the level of cortical sources60. We constructed
individual three-layer head models from subject specific MRI scans using fieldtrip61

(functions, ft_volumesegment and ft_prepare_mesh). Head models were aligned to
the MEG data by a transformation matrix that aligned the average fiducial coil
position in the MEG data and the corresponding locations in each head model.
Transformation matrices were generated using MNE software62. We computed one
transformation matrix per recording session. Third, we reconstructed cortical
surfaces from individual MRIs using Freesurfer and aligned two different atlases to
each surface63,64. In a fourth step we used MNE62 to compute LCMV filters for
projecting data into source space. LCMV filters combined a forward model based
on the head model and a source space constrained to the cortical sheet (4096
vertices per hemisphere, recursively subdivided octahedron) with a data covariance
matrix estimated from the cleaned and epoched data. We computed one filter per
vertex, based on the covariance matrix computed on the time-points from stimulus
onset until 1.35 s after stimulus onset across all trials. We chose the source
orientation with maximum output source power at each cortical location. In a final
step, we computed TFRs of the epoched MEG data (same method as described for
the sensor-level TFR decomposition) and projected the complex time-series into
source space. In source space we computed TFR power at each vertex location and
then averaged across all vertices within a ROI. We aligned the polarity of time-
series at neighboring vertices, because the beamformer output potentially included
arbitrary sign flips for different vertices.

For all analyses except the one for Supplementary Fig. 7b, we collapsed power
values within hemisphere-specific regions of interest across vertices. We then
converted the power values into units of percent power change (i.e., modulation)
relative to the baseline power in each frequency9. To this end, we averaged power
estimates across trials and time in a pre-stimulus interval (−250 to 0 ms before test
stimulus onset). This yielded a frequency-specific, but condition-independent,
baseline that was applied to normalize power values from each trial. The baseline
was computed by averaging across all vertices within each hemisphere-specific part
of a given region of interest (ROI; see below). For Supplementary Fig. 7b (fine-
grained decoding), no pre-trial baseline was necessary due to feature
standardization during the decoding analysis.

For all analyses except for Fig. 2c and Supplementary Fig. 7, the resulting
baseline corrected hemisphere-specific power modulation values were collapsed or
subtracted across hemispheres. The subtraction yielded the hemispheric
lateralization of power modulations between the hemisphere contralateral and
ipsilateral to the hand used to report stronger choices (choice-to-hand mapping
counterbalanced across participants, see section Task and Procedure above).

Regions of interest. We used two sets of ROIs. The first contained 18 cortical
regions listed in Table 1, all of which were defined by previous fMRI work: (i)
retinotopically organized visual cortical field maps described in the atlas from
Wang et al.63 and (ii) three regions exhibiting hand movement-specific later-
alization of cortical activity: aIPS, IPS/PCeS and the hand sub-region of M136.
Following a scheme proposed by Wandell and colleagues65, we grouped retinotopic
visual cortical regions with a shared foveal representation into clusters, thus
increasing the spatial distance between ROI centers and minimizing the risk of
signal leakage. The second, cortex-wide, set of ROIs were 180 regions covering the
cerebral cortex, as defined in64. All ROIs were co-registered to individual structural
MRIs.
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Choice-specific lateralization of neural activity. We computed TFRs of choice-
specific power lateralization for each ROI (contralateral vs. ipsilateral to hand
movement used to report stronger choice). Lateralized activity was computed for
each physical stimulus (i.e., mean test contrast) and choice condition separately
before computing the final contrast that isolated choice-specific activity. For the
latter, we contrasted error and correct responses for each physical stimulus (con-
trast) condition separately. We first averaged trials from each combination of
stimulus and choice condition and subsequently computed the difference between
hits and misses, and then the difference between false alarms and correct rejects,
and finally averaged these two differences. In other words, we computed the dif-
ference between stronger and weaker choices, separately for each physical stimulus
condition (mean contrast of test stimulus), and only averaged their results after-
wards. This ensured that any activity differences due to the physical stimulus were
factored out and the result isolated differential activity that was specific to beha-
vioral choice. Statistical significance of lateralization values was assessed by cluster-
based permutation test (threshold free cluster enhancement, H= 2, E= 0.5, p <
0.05).

Contrast-dependent modulations of neural activity. Stimulus-specific activity
was computed similarly to the above choice-specific activity, but on TFRs of the
hemisphere-averaged power values (not their lateralization). This was done because
the full-field, centrally presented visual grating stimuli were expected to produce
about equally strong sensory responses in both hemispheres. To factor out choice
information in this analysis, conversely to the computation of choice-specific
activity, we now contrasted different physical stimulus conditions (i.e., mean test
contrast), separately for each choice and then averaged their result. Statistical
significance of power changes was assessed by cluster-based permutation test
(TFCE, H= 2, E= 0.5, p < 0.05).

Decoding of choices. We used multivariate pattern classification techniques66 to
decode choice information contained in the estimated activity patterns of indivi-
dual ROIs. Decoding was carried out separately for each time-point throughout the
trial in order to generate time courses of choice-predictive activity.

We used three different choice decoding approaches, referred to as approaches
(i), (ii), and (iii) below. These approaches differed in their spatial extent and
granularity, as well as in the treatment of the two physical stimulus categories (i.e.,
mean test contrast stronger than reference; mean test contrast weaker than
reference). Approaches (i) and (ii) used the spectral pattern of power values (1–145
Hz) from both hemispheres for each ROI (i.e., coarse-grained spatial patterns), and
we trained separate classifiers per stimulus category, effectively asking the classifiers
to separate correct choices from errors within stimulus category. Thus, decoders
from approaches (i) and (ii) could exploit hemisphere-and frequency-specific
power values from each time-point and stimulus category to predict choices. In
both approaches, features were z-scored before decoding based on training data
only, and the same transformation was applied to test data before evaluating
decoding performance. We used linear support vector machines for decoding
(C= 1), as implemented in scikit-learn. Since choices were not equally distributed
(<p_yes>= 0.57, <crit >=−0.23), we up sampled the minority class in the training
data (but not in the test set) by randomly repeating elements until the frequency of
choices was equal. In approach (i), the above-described procedure was applied to
the visuo-motor pathway set of ROIs (Fig. 2c). In approach (ii), this procedure was
applied to the cortex-wide set of ROIs (Supplementary Fig. 7a).

Approach (iii) used the spectral patterns of phase and power values from each
individual vertex (fine-grained spatial patterns) for a subset of ROIs from the above
two sets (Supplementary Fig. 7b). Owing to the high computational demand of
approach (iii), we focused it on M1-hand (for comparison) and 17 pre-selected
ROIs in dorsolateral prefrontal cortex anterior to premotor cortex, which have
been implicated in different aspects of decision-making by previous work67. The
procedure was as described above, except that we trained only one decoder to

predict choices across both stimulus categories, and that we performed
dimensionality reduction after z-scoring. The latter was done due to the large
number of features: two (power and phase) per vertex and frequency bin. We first
computed principle components of the training set and kept all components that
cumulatively explained 95% of the variance of the training set. We then projected
training and test set data into the space defined by these components. We then
evaluated a linear support vector machine with L1 penalty (C= 10/number of
features) and discarded all features whose weights were below 1e-5. Finally, we
trained another support vector machine (L2 penalty) on the final reduced feature
set (C= 1/2) and plotted the performance of this classifier on the test set
(Supplementary Fig. 7b). Principal component analysis and feature selection were
performed exclusively on the training set and then applied to the test set.

In all three approaches, we evaluated decoding performance by means of 10-
fold cross-validation and computed ROC-AUC values to evaluate each classifier
and averaged across folds. We split all data per subject into ten folds, keeping the
same percentage of choices in each fold. We then used nine folds to determine
parameters of the classifier and computed prediction scores on the tenth fold,
which we used to compute ROC-AUC values. We used Bayesian inference to
estimate uncertainty around average decoding performance (error bars in Fig. 2b).
We assumed that a participants AUC value at time-point t were samples from a T-
distribution (ignoring boundedness of AUC values because values were far from
the bound) and placed weakly informative priors on all parameters of this
distribution. We obtained posterior estimates using pymc368:

aucs;t ¼ StudentT μt ; σt ; γ
� �

; ð4Þ

μt � N 0:5; 1ð Þ; ð5Þ

σt � U 0; 5ð Þ; ð6Þ

γ � Exp 1
29

� �þ 1; ð7Þ
where s denoted the subject number and t the time-point. StudentT denotes the T-
distribution with mean μt, standard deviation σt, and shape parameter γ. N(0.5, 1)
denotes a Gaussian distribution with mean 0.5 and standard deviation 1, U the
uniform distribution defined in the interval [0, 5], and Exp the exponential
distribution. We used the NUTS sampler and two MCMC chains with 3000
iterations. We checked convergence visually and by ensuring that R̂69 was
below 1.05.

We also compared decoding values in IPS/PostCeS after accounting for linear
relationships with activity in M1-hand. We repeated decoding in IPS/PostCeS
using single-trial power values across all frequencies. However, this time we first
predicted IPS/PostCeS power values from their corresponding values in M1-hand
using linear regression for each frequency separately. We subtracted this prediction
from IPS/PostCeS power values and repeated the decoding procedure as before.

Decoding of contrast or running mean of contrast. We used a regression
approach to assess whether source-reconstructed spectral activity tracked indivi-
dual contrast samples or the running mean of contrast samples (termed accu-
mulated contrast in Fig. 3). As the test stimulus was large and spanned both visual
hemifields, we reasoned that decision-relevant neural activity in retinotopic areas
should, likewise, span both hemisphere-specific parts of the visual field maps. Thus,
individual contrast samples should be decodable from hemisphere-averaged
activity in visual cortical field maps. As choice-predictive activity in downstream
(pre-) motor regions was primarily contained in the hemispheric lateralization of
power values contra- vs.- ipsilateral to the upcoming hand movement, we further
assumed that the decision-relevant quantity, the running mean of contrast samples,
should also be decodable from lateralized activity in choice-related areas. We,
therefore, used either hemisphere-averaged power values from 1 to 145 Hz, later-
alized power values (contralateral vs. ipsilateral to hand movement used to report
stronger choice) for the results shown in Fig. 3.

In a separate analysis approach, we used separate power values from each
hemisphere-specific part of each ROI for decoding of sample contrast or its
running mean. This allowed the decoders to combine information from both
hemispheres and use either the mean across hemispheres or the lateralization if
beneficial. We found that this yielded almost identical results to those shown in
Fig. 3, with very strong correlations of the decoding time courses (e.g., average
correlations across subjects: 0.95 for decoding of sample contrast from V1; 0.91 for
decoding of accumulated contrast from M1-hand). Decoding of accumulated
contrast using lateralized power values yielded slightly better decoding
performance (t-test at t= 1.3 s, peak for decoder that used both hemispheres
separately: p= 0.0003, t= 4.67) presumably because the classifier had fewer but
equally informative features at its disposal. Given that our choice to average or
lateralize hemispheres was theoretically motivated from the outset and gave
marginally better results, we decided to present the more constrained decoding
results.

For each ROI, time-point t and subject we extracted single-trial power values for
all frequencies within the range from 1 to 145 Hz. We used hemisphere
hemisphere-averaged or lateralized power at each time-point t to predict the
contrast of each sample i (i ϵ{1..10}), or the running mean of contrast samples up to
sample i, called accumulated contrast. This yielded one prediction per trial,

Table 1 Definition for the sensorimotor pathway.

Cluster Functional areas Source

V1 Dorsal and ventral part of V1 Ref. 63

V2–V4 Dorsal and ventral parts of V2, V3, V4
V3A/B V3A, V3B
IPS0/1 IPS0, IPS1
IPS2/2 IPS2, IPS3
Lateral occipital LO1, LO2
MT+ TO1, TO2
Ventral occipital V01, V02
PHC PHC1, PHC2
aIPS aIPS1 Ref. 36

IPS/PostCeS IPS/PostCeS
M1 (hand) M1
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contrast sample position, time-point, subject, region of interest and hemisphere
combination (averaged or lateralized).

We used ridge regression to predict target values (sample contrast or
accumulated contrast). Power values were z-scored based on training data only and
the same transformation was applied to test data before evaluating prediction
performance. The analysis yielded the linear combination of frequency-specific
power values that maximized the correlation between predictors and response
variable (current sample contrast or accumulated contrast). The strength of L2
regularization applied by ridge regression was governed by a single parameter,
which we optimized in a nested cross-validation (possible values were 0.1, 1, 10).
We evaluated prediction performance by computing the Pearson correlation
between predicted contrast and actual contrast. To decode the running mean of all
contrast samples (accumulated contrast), we averaged the true contrast of all
preceding and the current sample (i.e., up to sample i), assuming perfect evidence
accumulation for simplicity, and predicted this value using the same power values.
We used tenfold cross-validation in all cases (see above for more details).

Regression of sample contrast on neural activity. We also used linear regression
to assess the sensitivity of activity at distinct frequencies to sample contrast. For
this encoding analysis, we isolated single-trial power fluctuations at 190 ms after
the onset of each contrast sample (identified as the peak latency of sample contrast
decoding in the previous analysis), and for each frequency f and sample position i
fit the following regression model:

ptrl;i;f ¼ β1ctrl;i þ β0; ð8Þ
where p denoted power and c sample contrast, both of which were normalized (z-
scored) prior to fitting. The fitted coefficients β1 reflected the strength and direction
of the relationship between frequency-specific power and sample contrast (Fig. 3c).
The reliability of time- and frequency-resolved contrast encoding at the group level
was assessed via cluster-based permutation test.

Computation of neural-activity kernels. We computed so-called neural-activity
kernels analogously to the psychophysical kernels in order to quantify choice-
information contained in different frequency bands and ROIs. Kernels were
computed by substituting single-trial sample contrast values with frequency and
ROI-specific power values, again separately for both physical stimulus categories.
Again, the resulting AUC values ranged between 0 and 1, with 0.5 indicating no
association between neural activity and choice. See above section Computation of
Psychophysical Kernels for the interpretation of AUC values larger or smaller
than 0.5.

To maximize sensitivity for small-amplitude choice-predictive signals, that are
expected in early visual cortex for such perceptual choice tasks (e.g., refs. 18,21), we
focused on the stimulus- and choice-specific frequency bands identified in previous
analyses. Furthermore, we used hemisphere-averaged power values for neural-
activity kernels because we assumed that decision-related activity in visual cortex
would be distributed across both left and right parts of each visual field map. This
assumption was motivated by (i) the stimulus spanning both visual hemifields and
(ii) correspondingly, sample contrast decoding being nearly identical for
hemisphere-averaged vs. separate-hemisphere signals (see previous section).
Finally, we carried out a simple ROC-AUC analysis based on a single scalar
variable, thus avoiding the need to fit free parameters for decoding this analysis.
These choices made the analysis maximally similar to studies that computed choice
probabilities of single neurons in primary visual cortex18,21 and maximally sensitive
for small-amplitude choice-predictive signals.

We used hemisphere-averaged gamma-band (collapsed across center
frequencies 50–65 Hz, i.e., bandwith: 40–75 Hz; compare with Fig. 2b) or low-
frequency band (center frequency: 10 Hz, bandwith: 0–20 Hz) power values
extracted from visual cortical field maps for each sample position i (at t= 190 ms
after sample onset, i.e., average peak contrast encoding of individual samples) to
compute ROC-AUC values. The so-computed kernels are referred to as overall
kernels in Fig. 4.

A follow-up analysis aimed to further remove the effect of trial-to-trial
fluctuations of the external contrast samples and isolate choice-predictive activity
originating from intrinsic sources. Here, we regressed single-trial sample contrast
values on the corresponding cortical power values (again at t= 190 ms after sample
onset). We then subtracted this prediction from power values and used these
residuals in the computation of V1 kernels, yielding the so-called residual kernels
in Fig. 4.

For the cross-correlation with M1 choice decoding time courses (see next
section), we also re-computed overall low-frequency kernels at the same (higher)
temporal resolution (shown for V1 in Supplementary Fig. 10) as used for
choice decoding in Fig. 2. To this end, we computed ROC-AUC values for
each time-point t.

Regression of alpha- and gamma-band activity on choice. To complement the
above neural-activity kernel analysis, we used logistic regression to model single-
trial choice as a function of visual gamma-band (bandwidth 40–75 Hz) and low-
frequency band (bandwidth 0–20 Hz) power and, importantly, their interaction.
The interaction term in this model assessed the extent to which fluctuations in

low-frequency power altered the relationship between gamma-band power and
choice. We first averaged power values at each frequency band (again at 190 ms
post-sample onset) over the first (samples 1–5) and second (samples 6–10) half of
contrast samples per trial, with the aim of mitigating noise in the single-sample
responses but preserving our ability to assess temporal asymmetries between fre-
quency bands. For each visual field map ROI, we then fit the following regression
model:

ytrl ¼ logistic
P

h2 1;2f g
β1;hαtrl;h þ β2;hγtrl;h þ β3;hαtrl;hγtrl;h þ β0

" #
; ð9Þ

where ytrl denoted the choice on trial trl, αtrl and γtrl denote the corresponding (z-
scored) low-frequency and gamma-band activity, respectively, and h denoted the
half (first or second) of the test stimulus interval. We assessed the group-level
significance of individual terms from this choice model via one-sample t-test
against zero, computed temporal asymmetry scores by subtracting βn,1 from βn,2,
and tested for differences in these temporal asymmetries between the two fre-
quency bands via paired, two-sided t-test (Supplementary Fig. 9).

Correlating choice-related activity in M1 and visual cortex. We aimed to
quantify the association between the time course of choice-predictive activity in
M1-hand and low-frequency kernels in all visual cortical field maps. To this end,
we computed, for each subject, the cross-correlation between the M1-hand choice
decoding time course (ROC-AUC values from) and the high temporal resolution
version of low-frequency kernels. Specifically, for each visual field map, we com-
puted the Pearson correlation between the ROC-AUC values from M1-hand in the
interval from t= 0 to t= 0.8 s and time-shifted versions (lags from −215 to 215
ms) of the low-frequency kernel for that visual field map (Fig. 5, inset). A lag of
100 ms, for example, correlated M1-hand ROC-AUC values in the interval t=
[0,0.8] s with low-frequency kernels in the interval t= [0.1, 0.9] s. This analysis
yielded one correlation coefficient per lag, subject and visual field map. The cross-
correlation functions for all visual field maps were finally collapsed, and tested for
significance, across subjects (Fig. 5). Positive lags of the peak cross-correlation
indicated a temporal advance of choice decoding performance in M1-hand.
Negative lags of the peak cross-correlation indicated an advance of the low-
frequency kernels in visual field maps.

Signal leakage between ROIs can confound correlations between estimates of
regionally specific activity derived from source-reconstructed MEG-data70. Such
leakage can occur due genuine field spread (volume conduction), as well as the
limited precision of the LCMV spatial filters. To obtain an upper bound of the
effect of signal leakage present in our data, we computed the zero-lag correlation
between the ROC-AUC values of the M1-hand choice decoder and the low-
frequency kernel, now taken from M1-hand, rather than the visual field maps. As
this zero-lag correlation it compared two (partially redundant) signals obtained
from the exact same ROI, it quantified the maximum possible leakage effects in our
data. Thus, we used it as a conservative reference (Fig. 5, green) against which we
compared the cross-correlation values obtained for the visual field maps (paired t-
tests). Any significant difference pinpointed a component of visual field map cross-
correlations that was unconfounded by signal leakage.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
A reporting summary for this Article is available as a Supplementary Information file.
The original data are provided as (i) source-reconstructed MEG data at [https://doi.org/
10.6084/m9.figshare.12770366], (ii) as raw (sensor-level) MEG data at [https://doi.org/
10.6084/m9.figshare.12759332], and (iii) as behavioral data only [https://doi.org/10.6084/
m9.figshare.12783647]. Source data are provided with this paper.

Code availability
The Python code for all analysis steps is available at https://github.com/DonnerLab/
2020_Large-scale-Dynamics-of-Perceptual-Decision-Information-across-Human-
Cortex.
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