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Learning the statistical structure of the environment is crucial for adaptive behavior. Humans and nonhuman decision-makers seem to
track such structure through a process of probabilistic inference, which enables predictions about behaviorally relevant events. Devia-
tions from such predictions cause surprise, which in turn helps improve inference. Surprise about the timing of behaviorally relevant
sensory events drives phasic responses of neuromodulatory brainstem systems, which project to the cerebral cortex. Here, we developed
a computational model-based magnetoencephalography (MEG) approach for mapping the resulting cortical transients across space,
time, and frequency, in the human brain (N � 28, 17 female). We used a Bayesian ideal observer model to learn the statistics of the timing
of changes in a simple visual detection task. This model yielded quantitative trial-by-trial estimates of temporal surprise. The model-
based surprise variable predicted trial-by-trial variations in reaction time more strongly than the externally observable interval timings
alone. Trial-by-trial variations in surprise were negatively correlated with the power of cortical population activity measured with MEG.
This surprise-related power suppression occurred transiently around the behavioral response, specifically in the beta frequency band. It
peaked in parietal and prefrontal cortices, remote from the motor cortical suppression of beta power related to overt report (button press)
of change detection. Our results indicate that surprise about sensory event timing transiently suppresses ongoing beta-band oscillations
in association cortex. This transient suppression of frontal beta-band oscillations might reflect an active reset triggered by surprise, and
is in line with the idea that beta-oscillations help maintain cognitive sets.
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Introduction
Humans and other organisms continuously adapt their behavior
to the statistical structure of their environment. This suggests that

the brain is equipped with neural machinery for statistical learn-
ing, which can interact with the processes driving goal-directed
behavior. Of particular importance here is surprise (Dayan and
Yu, 2006; O’Reilly et al., 2013), a violation of one’s expectation
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Significance Statement

The brain continuously tracks the statistical structure of the environment to anticipate behaviorally relevant events. Deviations
from such predictions cause surprise, which in turn drives neural activity in subcortical brain regions that project to the cerebral
cortex. We used magnetoencephalography in humans to map out surprise-related modulations of cortical population activity
across space, time, and frequency. Surprise was elicited by variable timing of visual stimulus changes requiring a behavioral
response. Surprise was quantified by means of an ideal observer model. Surprise predicted behavior as well as a transient sup-
pression of beta frequency-band oscillations in frontal cortical regions. Our results are in line with conceptual accounts that have
linked neural oscillations in the beta-band to the maintenance of cognitive sets.

7600 • The Journal of Neuroscience, August 29, 2018 • 38(35):7600 –7610



about the next event, which might indicate a sudden change in
the environmental structure, and can transiently boost central
arousal state, increasing the organism’s sensitivity and learning
rate (Yu and Dayan, 2005; Nassar et al., 2012).

Expectation, uncertainty, and surprise are intricately related.
The precision of expectations scales with uncertainty, that is, the
width of the distribution of observed events: high uncertainty
precludes forming precise expectations. Violations of expecta-
tions cause surprise, the level of which depends on the difference
between the expected and actually observed event (often termed
prediction error). These intuitions can be formalized within the
framework of Bayesian statistics and used to search for neuro-
physiological correlates (see Materials and Methods, Bayesian
ideal observer model: general approach and rationale).

One important dimension of the environment is the timing of
relevant sensory events (Gibbon et al., 1997; Nobre et al., 2007).
Two lines of work have studied the neural basis of temporal ex-
pectation effects. One has shown that environments with rhyth-
mic (i.e., precise) temporal structure entrain neural oscillations
in the cerebral cortex, the phase of which then modulates sensory
cortical responses, perception, and cognition (Lakatos et al.,
2008; Schroeder and Lakatos, 2009; Rohenkohl and Nobre, 2011;
Rohenkohl et al., 2012; Riecke et al., 2015; van Ede et al., 2017). In
these rhythmic changes of the environment, surprise is mini-
mized (once the structure is learned expectations match observa-
tions). Consequently, this first line of work has identified neural
correlates of temporal expectation, rather than of surprise.

The second line of work has studied neural responses of sub-
cortical, neuromodulatory centers, specifically, dopaminergic
centers of the midbrain, to sensory events entailing reward. Be-
cause event timing here varied nonperiodically from trial to trial
as in many natural environments, this work could link phasic
neuromodulatory responses to temporal surprise (Hollerman
and Schultz, 1998; Fiorillo et al., 2008). Surprise-driven phasic
responses might also occur in other neuromodulatory brainstem
systems, such the noradrenergic system (Dayan and Yu, 2006).
Because brainstem neuromodulatory systems have widespread
projections to the cortical networks underlying goal-directed be-
havior, one would expect changes in cortical population activity
elicited by surprise (Bouret and Sara, 2005). However, this sec-

ond line of work on temporal expectation has focused on
surprise-related activity in subcortical systems.

Here, we studied responses to surprise about the timing of
sensory events in human cortex. A computational model-based
magnetoencephalography (MEG) approach enabled us to map
surprise-related cortical transients across space, time, and fre-
quency. We used a Bayesian model that accumulated previously
experienced durations of the interval between visual changes into
posterior beliefs about the next interval duration. This ideal ob-
server model provided trial-to-trial measures of temporal sur-
prise, which predicted modulations of prefrontal and parietal
cortical beta-band dynamics.

Materials and Methods
This paper reports a reanalysis of an MEG dataset that has previously
been used for a study into decision-related feedback signals in visual
cortex (Meindertsma et al., 2017). Here, we focus on those aspects of the
experimental design that are most relevant for the issue addressed in the
current paper: uncertainty and surprise about the timing of the experi-
mental events specified below. We refer to our previous paper
(Meindertsma et al., 2017) for a more detailed description of the visual
stimulus and the behavioral task.

Participants
Thirty-one volunteers participated in the experiment. Two participants
were excluded due to incomplete data and one participant did not com-
plete the experiment due to poor quality of simultaneously acquired
pupil data. Thus, 28 participants (17 female, age range 20 –54 years, mean
age: 28.3, SD: 9.2) were included in the analysis. All participants had
normal or corrected-to-normal vision and no known history of neuro-
logical disorders. The experiment was conducted in accordance with the
Declaration of Helsinki and approved by the local ethics committee of
the Hamburg Medical Association. Each participant gave written in-
formed consent.

Stimulus
MEG was measured while subjects viewed the intermittent presentation
of a target (full contrast Gabor patch; diameter: 2°) and reported the
onset and offset of the target (Fig. 1A). The Gabor target flickered at 10
Hz (counter-phase) through alternation of two out-of phase Gabors ev-
ery 50 ms. This caused steady-state evoked responses over visual cortex at
10 and 20 Hz (data not shown), distinct in terms of spectral profile,
topography and functional characteristics from the surprise-related
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Figure 1. Behavioral task. A, Schematic depiction of the stimulus and task. A salient, flickering target (Gabor patch) temporarily appeared and disappeared on a rotating background. Subjects
fixated on the red fixation mark and reported stimulus changes by either direct button press or silently counting the disappearances and reporting the total number at the end of the run. B, The
interval duration between stimulus changes was randomly drawn from one of three distributions that corresponded to three hazard rates (left), resulting in distinct distributions of intervals (right;
average histogram over subjects). C, Example time courses of target presence (1 � present, 0 � absent) drawn from these distributions.
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modulations we focused on here. The target was located in either the
lower left or lower right visual field quadrant (eccentricity: 5°, counter-
balanced between-subjects), surrounded by a rotating mask (17° � 17°
grid of black crosses), and superimposed on a gray background. The
mask rotated at a speed of 160°/s. The target was separated from the mask
by a gray “protection zone” subtending �2° around the target (Bonneh
et al., 2001). Subjects fixated on a fixation mark (red outline, white inside,
0.8° width and length) centered on the mask in the middle of the screen.
Stimuli were presented using the Presentation Software (NeuroBehav-
ioral Systems; RRID:SCR_002521). Stimuli were back-projected on a
transparent screen using a Sanyo PLC-XP51 projector with a resolution
of 1024 � 768 pixels at 60 Hz. Subjects were seated 58 cm from the screen
in a whole-head MEG scanner setup in a dimly lit room.

Behavioral task and experimental design
The subjects’ task was to maintain stable fixation and detect the physical
offsets and onsets of the target, the predictability of which fluctuated
from trial to trial, and the mean predictability of which varied systemat-
ically across blocks. To this end, the interval durations between stimulus
changes were sampled from three different distributions in the different
blocks. These distributions were computed so as to produce three prede-
termined so-called hazard functions, which describe the probability that
an event will occur at a particular time, given that it has not occurred yet.
The hazard function formalizes the expectation of a change and affects
human reaction times in simple detection tasks (Luce, 1986). The hazard
function can be computed as follows:

�t �
ft

1 � Ft
, (1)

where �t is the value of the hazard function at time point t, ft is the value
of distribution f on time point t, and Ft is the area under the curve of
distribution f from �� to time t.

We used the following procedure to construct three “environments”,
referred to as “Short”, “Long”, and “Flat”. We first selected three hazard
functions that systematically differed in their level of predictability (Fig.
1 B, C). We then computed the actual distributions of intervals by rear-
ranging Equation 1 as follows:

ft � � t
� �1 � Ft�, (2)

The interval durations were then randomly selected from f. Specifically,
the temporal environments were defined as follows:

Short. The hazard function was a narrow Gaussian distribution with
mean � 2 s and SD � 0.2 s. This resulted in nearly periodic and, thus,
largely predictable intervals between events.

Long. This condition used the same hazard function as the previous
condition, but with a larger mean and SD (6 s and 0.6 s, respectively) thus
rendering event timings less predictable (Fiorillo et al., 2008).

Flat. The hazard function was flat with a mean of 6 s, yielding the least
predictable interval durations. The resulting distribution of interval du-
rations, ft, therefore, approximated an exponential distribution; charac-
terizing a memory-less process (i.e., the timing of the next event could
not be predicted from previously encountered intervals; Feller, 1959).

Computational analysis with a Bayesian model (Fig. 2) described be-
low confirmed that the sampled intervals from these three environments
gave rise to different mean levels of uncertainty and surprise (Fig. 2G,H ).
The three environments were presented in separate 3 min blocks.
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Figure 2. Bayesian updating model of belief about temporal structure. A–F, The model estimated the posterior predictive distribution over timings of stimulus changes for each upcoming
interval t	1. This distribution is denoted as ft	1. The gray histogram shows the distribution of MCMC-samples (Yt	1) from the posterior predictive distribution for interval t	1. ft was estimated
by fitting a gamma probability density function (red line) to Yt	1; it was then used to extract two different information-theoretic computational variables for each trial: entropy and surprise.
A, Entropy, a measure of the uncertainty about the timing of the interval duration of the current interval, computed from the complete distribution ft	1 using Equation 4 (see text). The wider the
distribution, the higher entropy. B, Surprise, a measure of information provided by each new interval duration, was also computed from the posterior predictive distribution, but with one extra step
(see main text): the part of the distribution up to the current interval duration was truncated, and the remainder of the distribution renormalized to integrate to 1 ( f
t	1, black line). Surprise was
defined based on this truncated function using Equation 5 (see text). C, Example sequence of interval durations (white line; from the long Gaussian condition) with posterior predictive distribution
f (color coded). D, Entropy corresponding to interval durations in C (left); relationship between interval duration and entropy (right). E, Surprise, analogous to D. Red dot is an example of exceptionally
long interval (see duration in C). Surprise on this trial was low (E) because time-dependent surprise decreased over time. After observing this interval entropy increased (D) because the observed
interval was longer than the expected duration, given previous intervals. F, Correlation between log(RT) and surprise as a function of different Weber fractions (black line; see Materials and Methods).
Second-order polynomial fit over these correlations used to select the Weber fraction yielding peak correlation. (red line; red dot depicts peak � 0.17). G, Regression of surprise on entropy. Thin
colored lines, regression lines of single subjects; black lines, group average regression. H, Trial-averaged surprise and entropy for the three experimental environments defined in Figure 1. Bars, Group
average; black dots, single subjects. ***p � 0 for all tests, permutation tests across subjects.
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Within each of the above temporal environments, there were two
behavioral tasks. Both tasks required subjects to monitor the changes of
the small visual target. In one task (called Detection-button), they were
asked to report those changes immediately. Specifically, subjects re-
ported target offsets or onsets by pressing a button with the right index or
middle finger, respectively. In the other task (Detection-count), they were
asked to count and report the changes at the end of the block. Subjects
silently counted the number of target offsets and reported the total in
response to a 4-AFC question at the end to the block. The two tasks were
randomly selected before each block under the constraint that both
would occur equally often. We here analyzed both task conditions, but
only found robust effect for Detection-button.

All subjects completed a total of six blocks of the Short environment,
and 16 blocks of the other Long and Flat environments, resulting in about
the same number of trials per environment. Additionally, subjects per-
formed a motion-induced blindness task and a functional localizer task,
which were not relevant for the current study, but are reported in our
previous paper (Meindertsma et al., 2017). All blocks within an environ-
ment were completed in succession; the order of environments was
counter-balanced across subjects.

Bayesian ideal observer model: general approach and rationale
We developed an ideal observer model to quantify surprise and uncer-
tainty about the timing of sensory events (i.e., the target onsets and
offsets). The model tracked the evolving predictive distribution of up-
coming interval durations; more specifically, it computes the posterior
predictive of unobserved interval durations, conditional on the observed
data, throughout each block of the experiment. We assumed that subjects
tracked the temporal statistics of the task in a similar way, and we used the
posterior predictive distribution as a proxy of the subjects’ belief states
(i.e., their prediction of the timing of the next stimulus change).

Although we used an ideal observer model that prescribed the optimal
inference for our task, we are agnostic to the precise inference process
that was used by our subjects and we do not claim that subjects used the
exact computations used by the model. Our central assumption was that
subjects accumulated observations throughout each block (i.e., over
more than just 1 or 2 previous intervals). This assumption was derived
from a substantial body of work on other forms of learning and evidence
accumulation (Sutton and Barto, 1998; Gold and Shadlen, 2007; Glaze et
al., 2015), and it was supported by the findings described in Results. Our
model implemented the normative accumulation strategy by perfectly
integrating across the entire history of the observations (here: of interval
durations) and updating internal representations accordingly. A practi-
cal benefit of this approach was that it did not require fitting of model
parameters, for which our current data did not provide sufficiently
strong constraints.

The only free parameter in the model was the level of temporal esti-
mation noise, which we allowed to scale with the magnitude of the inter-
val duration according to Weber’s law (Gibbon et al., 1997). To this end,
we transformed the discrete values of the observed intervals into Gauss-
ian distributions that were used to update the model (see next section).
The mean of these distributions was equal to the observed interval t and
their SD was equal to the observed interval t times a Weber’s fraction
(coefficient of variation; Gibbon et al., 1997). We simulated the model
with 34 Weber’s fraction values ranging from 0.001 to 0.5 (0.001, 0.05:
0.01:0.35, 0.4, 0.5). We then computed the correlation between the mea-
sured single-trial reaction times (pooled across all subjects) and surprise
(see Bayesian ideal observer model: implementation), separately for each
Weber fraction, and selected the Weber fraction that maximized this
correlation. To this end, we fitted a second order polynomial to the
correlation coefficients as a function of Weber’s fraction and extracted
the maximum of the polynomial. This yielded a Weber’s fraction of 0.17
(Fig. 2F ), which was used for all analyses reported in this paper. Using
model-based surprise from a noise-free version of the model yielded
qualitatively identical results (data now shown).

Bayesian ideal observer model: implementation
We assumed that the subjects used a model in which the observed inter-
vals have been generated from a gamma distribution with parameters

alpha (shape) and beta (scale). These parameters were given uninforma-
tive prior distributions (Lee and Wagenmakers, 2013), which were up-
dated by the data to posterior distributions.

Using the interval duration distributions as the observations, we could
obtain the expectations about to-be-observed intervals by generating
posterior predictives (i.e., drawing an alpha-beta pair from the joint
posterior distribution and then drawing a predicted interval from the
associated gamma distribution; repeating this process many times yields
a posterior predictive distribution for the to-be-observed interval). We
assumed that the subjects updated their belief state after each observation
of a new interval duration. Likewise, the model was updated after every
interval t by computing a new posterior predictive distribution, based on
the durations of intervals 1:t and the prior.

We generated a posterior predictive distribution over the to-be-
observed intervals using Gibbs sampling [a Markov chain Monte Carlo
(MCMC) algorithm; Andrieu et al., 2003] in the software JAGS (Plum-
mer, 2003) and MATLAB vR2013a (RRID:SCR_001622). We used two
Markov chains with different starting points comprised of 2500 samples
per chain with 500 samples burn-in, for a combined total of 4000 sam-
ples. The posterior predictive MCMC samples Y1 . . . 4000 for the next
interval, t	1, were then summarized by a gamma distribution using the
functions “gamfit” and “gampdf” in MATLAB (Fig. 2 A, B):

Y1. . . 4000
�t	1� � Gamma��t	1, �t	1� � ft	1, (3)

where Y(t	1)
1 . . . 4000 are the MCMC samples, and �t	1 and �t	1 are the pa-

rameters of the gamma distribution ft	1; hence, ft	1 is the continuous
posterior predictive distribution for the upcoming interval after having
observed the preceding intervals 1. . . t.

To be able to relate trial-to-trial uncertainty and surprise to behavior
and the MEG data, we extracted two information theoretic metrics from
the time-evolving posterior predictive distribution ft	1 (i.e., belief).

Uncertainty. We quantified trial-to-trial uncertainty about the timing
of the upcoming interval t	1 as the entropy of the posterior predictive
distribution ft	1 (i.e., the posterior predictive based on intervals 1…t):

Ht	1 � � �
0

�

� ft	1� x��log ft	1 �x��dx, (4)

where Ht	1 is the entropy after intervals 1…t, and the integral is over all
possible values x for the upcoming interval. Entropy depended on the
width of ft	1, and thus uncertainty was higher when predictions of inter-
val durations were less precise (Fig. 2 A, C,D). For clarity, in what follows
we will use the term entropy when referring to this uncertainty.

Surprise. For every upcoming interval t	1, we computed the surprise
about the corresponding interval duration in terms of the Shannon in-
formation conveyed by the interval duration xt	1, given the posterior
predictive distribution ft	1:

It	1 � � logft	1 �xt	1�, (5)

where It	1 is the information gained by interval t	1, given ft	1. Thus,
surprise was defined as the negative log-probability of the upcoming
interval t	1, given the intervals that had been presented so far.

We added one further transformation in the computation of surprise.
The surprise measure defined in Equation 5 quantified the surprise about
the upcoming event timing based on the posterior predictive distribution
ft	1, but disregarding the time elapsed in the current interval. It is un-
likely that exactly this distribution translated into subjects’ level of sur-
prise: as time passed and no event occurred in a given interval, all interval
durations shorter than the elapsed time become impossible. Subjects
likely discounted these impossible intervals in their expectation of the
timing of the upcoming event, which should have also affected their level
of surprise. In other words, their internal representation of the posterior
predictive distribution changed dynamically throughout each trial, as a
function of elapsed time. We constructed a time-varying version of the
posterior predictive distribution ft	1, which was also conditioned on the
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elapsed time on interval t. This version was
equal to ft	1 for elapsed time equal to 0 and
then increasingly deviated from ft	1 as elapsed
time grew. We approximated this time-varying
distribution, denoted as f
t	1 in the following,
by setting all probabilities in ft	1 up to the cur-
rent time point to zero and renormalizing the
remaining distribution to integrate to 1 (Fig.
2B). We then computed surprise based on this
new distribution f
t	1 using Equation 5. The
time-variant prior f
t	1 converged to 1 as time
passed, and thus surprise approached 0 for lon-
ger intervals.

Regressing computational variables
against behavior
We used reaction time (RT) during Detection-
button as behavioral readout of the impact of
uncertainty and surprise. Accuracy ap-
proached ceiling for all subjects, due to the high
saliency of the target. We computed and com-
pared mean RTs per environment and stimu-
lus event (target offset and onset).

We also correlated RT to our trial-to-trial
estimates of surprise and entropy. RT was log-
transformed so as to normalize the skewed RT
distributions. To test whether the model-based
surprise fitted the behavioral (RT) data better
than a linear combination of just the two pre-
vious interval durations (i.e., a leaky accumu-
lation with strong leak), we used multiple
linear regressions to compare the following
two nested models:

M1: log(RT) � Intervalt
� Env � Event � Intervalt�1

� Env � Event

(6)

M2: log(RT) � Intervalt
� Env � Event � Intervalt�1

� Env � Event

� Surprise � Con � Event, (7)

where Intervalt and Intervalt�1 corresponded to the durations of the two
intervals preceding the visual change (i.e., interval on trial t and t�1),
and Surprise was the computational model-derived metric. Predictors
were multiplied by categorical variables environment (Env; the three
different temporal environments) and Event (target offset or onset). Both
variables strongly affected RT (Fig. 3A). We fitted both M1 and M2 and
compared the fits per subject using adjusted R 2.

MEG data collection
MEG data were acquired on a CTF 275 MEG system (VSM/CTF Systems)
with a sample rate of 1200 Hz. The location of the subjects’ head was
measured in real-time using three fiducial markers placed in the both
ears and on the nasal bridge to control for excessive movement. Further-
more, electrooculogram and electrocardiogram were recorded to aid ar-
tifact rejection. All data were recorded in sets of four blocks of 3 min
duration (or 2 blocks at the end of an environment set).

MEG data analysis
Preprocessing. The data were analyzed in MATLAB vR2013a (MathWorks;
RRID:SCR_001622) using the Fieldtrip (Oostenveld et al., 2011; RRID:
SCR_004849) toolbox and custom-made software.

Trial extraction. In blocks involving subjects’ reports, we extracted
trials of variable duration, centered on subjects’ button presses, from the
3 min blocks of continuous stimulation. We call this method for trial
extraction “response-locked”. The following constraints were used to
avoid mixing data segments from different percepts when averaging
across trials: (1) The maximum trial duration ranged from �1.5 s to 1.5 s
relative to report; (2) when another report occurred within this interval,
the trial was terminated 0.5 s from this report; (3) when two reports

succeeded one another within 0.5 s, no trial was defined; and (4) for the
analysis of Detection-button blocks, we included only those reports that
were preceded by a physical change of the target stimulus within 0.2 to 1 s,
thus discarding reports not related to stimulus changes. We used this
method for the analyses related to surprise. In an alternative analysis of all
Detection blocks, trials were defined in the same way as described above,
but now aligned to physical target onsets and offsets (“stimulus-locked”).
In the Detection-count task, no button responses were given during the
block, so stimulus-locked trial extraction was the only option. We used
this method for the analysis related to entropy (for similar procedures,
see Kloosterman et al., 2015b; Meindertsma et al., 2017).

Artifact rejection. All epochs that contained artifacts caused by envi-
ronmental noise, eye-blinks, muscle activity or squid jumps were ex-
cluded from further analysis using standard automatic methods included
in the Fieldtrip toolbox. Epochs that were marked as containing an arti-
fact were discarded after every artifact detection step. For all artifact
detection steps the artifact thresholds were set individually for all sub-
jects. Both of these choices aimed at optimization of artifact exclusion.
Line-noise was filtered out by subtracting the 50, 100, 150, and 200 Hz
frequency components from the signal.

Time-frequency decomposition. We used a sliding window Fourier
transform to compute the time-frequency representation for each sensor
and each trial of the MEG data. The sliding window had a length of 200
ms and a time step size of 50 ms, with one Hanning taper (frequency
range 5–35 Hz, frequency resolution 5 Hz, and frequency step size 1 Hz).
The data were baseline corrected for every frequency bin and MEG sensor
separately. The baseline was computed by averaging single-trial power
over a baseline time window. The baseline time windows ranged from
�1.25 to �0.75 s for response-locked and �1 to �0.5 s for stimulus-
locked analyses, respectively. The time course of every frequency bin and
sensor combination was baseline corrected by subtracting the single-trial
baseline power at that frequency and dividing by the mean baseline
power across trials within an experimental environment. We used the
single-trial baseline power for subtraction to eliminate the effect of slow
power fluctuations, because any surprise-related power modulations
could only have occurred after the sensory event that elicited surprise.
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We used the mean baseline for division to minimize noise in the single-
trial estimates of the single-trial power modulation values. This division
was used to compensate for the common decay of power with frequency,
which hinder identification of effects at higher frequencies, and to nor-
malize the single-trial modulation values (Siegel and Donner, 2010). It
did not systematically alter the association of power modulation values
with other variables.

Source reconstruction. We used an adaptive linear spatial filtering
method called linear beamforming (Van Veen et al., 1997; Gross et al.,
2001) to estimate single-trial modulations of MEG power at the source
level. We computed a common filter for a baseline time window (1– 0.5 s
before response), a “transient” time window, and a frequency band of
interest (0 – 0.5 s after response, 20 Hz � 4 Hz spectral smoothing; Fig.
4A, dashed box). The transient time window and frequency band of
interest were selected based on cluster-based statistics at the sensor level
(see next section). We used the measured head positions and individual
single-shell volume conductor models, based on individual images from
T1-weighted structural MRI. We computed the power values, in both
baseline and transient time windows, for each trial and source grid point
(i.e., voxel) as follows. First, we projected the sensor-level MEG power
values from the time window of interest as well as from a baseline time
window through the common spatial filter. Second, we converted the
estimated power values during the time window of interest into units of
power modulation, again by subtracting and dividing by the correspond-
ing baseline power values.

Correlating single-trial computational variables to MEG power
We correlated the MEG power modulation to our measures of entropy
and surprise, as derived using our model (see Bayesian ideal observer
model: implementation) across trials. Although intricately related (see
Introduction), uncertainty and surprise entailed different computations.
A key difference was when during the course of a trial these two quantities
were computed. Therefore, we reasoned that neural correlates of these

computational quantities should also differ in their dynamics: uncer-
tainty about event timing should be reflected in the neural baseline state
before occurrence of the sensory event, whereas surprise should be re-
flected in a transient response elicited by that event. Thus, we used dif-
ferent components of the single-trial MEG power estimates for the
analyses of entropy and surprise.

Entropy. We correlated entropy to the MEG power modulation sepa-
rately in every MEG sensor and frequency bin. This was done within-
subject and separately for the three environments. There are structural
differences in entropy and surprise between these environments (Fig.
2G,H ), thus pooling over these conditions might result in inflated cor-
relations that reflect session differences instead of the true correlation
between entropy and MEG power. We reasoned that entropy should
affect baseline or tonic arousal, where high entropy should cause higher
arousal. As our task was continuous, we considered the time window
right before the stimulus change the best reflection of a baseline state. For
this reason we averaged the MEG power over the time period right before
a stimulus change (�0.5 to �0.25 s with respect to the target offset or
onset) before correlating to entropy.

The results were then averaged over the three environments and trans-
formed with the Fisher z-transformation (Fisher, 1915):

z � 0.5 � ln�1 � r

1 � r�. (8)

We used two-tailed permutation tests with a cluster-based correction for
multiple corrections to test the correlation coefficients against zero
(Efron and Tibshirani, 1998; Maris and Oostenveld, 2007).

Surprise. Correlations between surprise and MEG power modulation
were performed using the same method, with the following exceptions.
First, we attuned the analysis in two ways to account for the correlation
between surprise and RT (Figs. 2F, 3). Because of this correlation, any
poststimulus correlations between surprise and MEG power modulation
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might reflect differences in the timing of the button press. We performed
this analysis response-locked, because these RT differences are difficult to
disentangle from genuine effects of surprise when the power modula-
tions are time-locked to the stimulus change. Additionally, to account for
confounding effects of RT and the duration of the previous interval, we
also performed a partial correlation analysis between surprise and MEG
power modulation with the interval duration preceding the stimulus
change or RT as covariate. Second, for the correlation between surprise
and MEG power modulation we did not average over a specific time
window, but instead performed correlations separately for every time
point, resulting in a 3-dimensional matrix of correlations (sensor �
frequency bin � time point). Consequently, we also performed cluster-
based permutation statistics over these three dimensions. The correla-
tions that survived cluster correction were visualized by integrating (i.e.,
computing the area under the curve) over sensors and frequency bins
(for the time course), sensors and time points (for the frequency spec-
trum), frequency bins and time points (for the topography), or just over
sensors for the time frequency representation (for a similar approach, see
Hipp et al., 2012).

To assess the robustness of the emerging clusters we performed a
cross-validation analysis using a leave-one-out procedure. To this end,
we repeated the cluster-based permutation statistics on all possible iter-
ations of N � 1 subjects, each time using the resulting cluster as a mask to
calculate the average correlation in the left-out subject, separately for
target offset and onset trials. These values were tested against zero and
against each other across subjects using permutation tests (10,000
permutations).

We also computed the correlation between trial-to-trial power mod-
ulation averaged over the whole cluster and log(RT). The resulting cor-
relations were tested against zero across subjects using a permutation test
(10,000 permutations).

The transient modulations of MEG power estimated for each voxel
in the source grid, derived by means of source reconstruction (see
MEG data analysis, source reconstruction), were correlated to the
trial-to-trial measure of surprise. This was done separately within
each subject and the resulting correlations averaged over subjects after
Fischer’s z-transformation (Eq. 8). For comparison, we also computed
the average modulations of MEG power in the same time window and
frequency band. The resulting maps of correlation or average power
modulation were nonlinearly aligned to a template brain (Montreal Neu-
rological Institute) using the individual images from structural MRI. To
test the similarity of the spatial topography of the correlation to the
average modulation of power, we correlated the two corresponding
source maps per subject and tested the correlation coefficients again zero
on the group level by means of a permutation test (10,000 permutations).

Results
Subjects (N � 28) performed a simple visual detection task re-
porting onsets and offsets of a small, but salient target stimulus
(Fig. 1A). In different blocks, target events were administered
using three different temporal environments (Fig. 1B,C) trans-
lating into different overall levels of uncertainty and surprise
about the timing of target events (Fig. 2G,H). To quantify these
two computational variables not only across conditions, but also
across individual trials, we developed a Bayesian belief-updating
model. The model incorporated the evolving beliefs (i.e., the pos-
terior predictive distributions) of an ideal observer about the
temporal intervals between the sensory events. Beliefs were dy-
namically updated across trials and even within trials (for sur-
prise, see Materials and Methods). From these time-evolving
probability distributions, we extracted trial-by-trial measures of
information-theoretic entropy (quantifying uncertainty) and
surprise, which we related to the behavior and neural dynamics of
our participants.

Estimates of entropy and surprise fluctuated across trials, es-
pecially in the early part of each block (Fig. 2C–E). The trial
averages of both measures within each block also varied lawfully

between the different experimental conditions, scaling with the
predictability of the stimulus changes (Fig. 2G,H). Estimates
were smallest for the Short condition, intermediate for the Long
condition, and largest for the Flat condition. As expected, varia-
tions in entropy and surprise were weakly correlated across trials
(r � 0.13 for Short and Flat, r � 0.19 for Long condition; Fig. 2G),
because both measures were computed from the same probabil-
ity distribution (see Materials and Methods). Even so, these two
variables entailed distinct computations, possibly by distinct
neural circuits. Critically, both computational variables could be
computed at different times during a trial, thus possibly leading
to different dynamical modulations cortical population activity.

Surprise predicts reaction time
The model-derived computational variable surprise predicted
subjects’ RT in the detection task. Mean RT scaled with the dif-
ferent temporal environments in the same way as surprise and
entropy, with the fastest RTs for Short and slowest RTs for the
Flat condition (compare Figs. 3A, 2E). RT correlated with sur-
prise also at the single trial level (Fig. 3B). We did not find robust
correlations to RT for entropy.

We also tested whether model-derived surprise (entailing ac-
cumulation of intervals across the entire experimental block)
predicted RT over and above a linear combination of only the two
previous intervals (entailing, e.g., a leaky accumulation with
strong leak). To this end, we used a nested regression model,
which quantified the predictive power of a combination of sur-
prise and the previous two intervals in accounting for the influ-
ence of temporal environments and target onset or offset, on RT
(see Materials and Methods). We compared this against a simpler
model with only the two previous intervals. Because model-based
surprise depended on all previous intervals, the comparison be-
tween the above two nested models assessed the impact on reac-
tion time of intervals beyond the second one. We used adjusted
R 2 for comparison, which penalized model complexity. This
comparison yielded higher adjusted R 2 values for the model in-
cluding surprise in 22 of 28 subjects (Fig. 3C), indicating that
surprise predicted RT over and above the duration of the previ-
ous two intervals.

Together, these results indicate that subjects tracked the tem-
poral structure of the task by accumulating interval distributions
at least over more than two intervals, akin to what was prescribed
by the ideal observer model. We next searched the whole-brain
MEG data for a dynamical neurophysiological signature of this
process. To this end, we focused on the trial-to-trial fluctuations
of surprise within each of the environments (Short, Long, Flat),
which were more pronounced than the differences in mean sur-
prise between environments.

Widespread cortical beta-band transient driven by surprise
We mapped out the cortical responses to trial-to-trial fluctua-
tions in surprise by correlating the model-based surprise mea-
sures to modulations of MEG power, around the time of subjects’
behavioral responses to sensory events. We did this in an exhaus-
tive fashion across every time and frequency bin and MEG
sensor and tested for clusters of significant correlations across
these three dimensions, while applying cluster-based multiple-
comparison correction (see Materials and Methods). This ap-
proach revealed negative correlations in the beta (�20 Hz)
frequency range, as well as in the lowest frequency bin resolved
(5 Hz), indicating that higher surprise was associated with lower
power in these frequency ranges. The peak in this negative corre-
lation cluster started �0.2 s before and reached its maximum
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�0.25 s after subjects’ report of the stimulus change. This cluster
exhibited several peaks over central, left frontal, and to a lesser
extent left parietal cortex (Fig. 4A,C).

For all analyses shown in Figures 4 and 5, we used partial
correlations, controlling for reaction time, and we focused on the
Detection-button task that entailed immediate behavioral report
of the change of the visual target (see Materials and Methods). We
controlled for reaction time because (1) the data showed that the
latter was affected by surprise (Fig. 3), and (2) motor responses
are known to modulate beta-power around the time of response
(Donner et al., 2009). Thus, button-presses could have poten-
tially influenced the modulation by surprise. We focused on
Detection-button because (1) we could only establish links be-
tween surprise and behavior for this task and (2) it allowed us to
lock neural dynamics more closely to the conscious registration
of the visual change. When performing the correlation analysis
for the Detection-count task (then locked to the physical stimu-
lus change), we did not obtain any in significant correlation clus-
ters. In two control analyses, we confirmed that the above results
were robust to (1) using the “raw” correlation between surprise
and MEG power and (2) controlling for the preceding interval
duration. Both analyses resulted in the highly similar clusters of
negative correlations (data not shown).

The surprise-related cluster was robust and not driven by out-
liers, and the effect was not specific to the type of stimulus event
(target onset or offset). We used a leave-one-out cross-validation
procedure to test the robustness of the correlations on both target
onset and offsets (see Materials and Methods). We found robust
negative correlations in the left-out subjects (Fig. 4D). Further-
more, the correlation was found for both target offsets and onsets
(Fig. 4D; mean �0.036, �0.025, SEM 0.010, 0.006, p � 0.006,
0.002, for target offsets and onsets, respectively; difference: p �
0.26, permutation tests, 10,000 permutations).

As expected from previous work on modulations of MEG
power around motor responses (Donner et al., 2009), the overall
modulation of MEG power in the time-frequency window of the

surprise-correlation cluster (16 –24 Hz, 0 – 0.5 s from response,
normalized by the baseline 1– 0.5 s before response) peaked in
bilateral motor cortex (Fig. 4B). But the component of beta-
power modulations that correlated with trial-by-trial surprise
showed a different cortical distribution, with negative correla-
tions that peaked in the central sulcus, extending from motor- to
more frontal cortex, and in left frontal and parietal cortex (Fig. 4
compare B, C). Indeed, there was no similarity between the indi-
vidual topographies of the surprise-linked and the overall power
modulations (mean correlation across subjects: r � �0.02, p �
0.42). These observations indicate that the report-locked modu-
lation linked to surprise and of overall power were located in
distinct cortical networks.

The surprise-related cluster for target offsets and onsets both
exhibited a bimodal in the frequency domain, similar to the
pooled analysis (compare Figs. 5, 4A): next to the peak �20 Hz
just after response, an additional peak was evident in the lowest
frequency bin resolved (5 Hz). For offsets, the effect was quite
sustained in time (�0.25 to 0.5 s around response); the topogra-
phy showed peaks over parietal and occipital cortex and over left
frontal cortex (Fig. 5A). By contrast, the cluster for target onsets
was more confined in time (with a sharp peak �0.1 s after report)
and a different topography that peaked over central parietal cor-
tex (Fig. 5B). Together, our results suggest that perceptual sur-
prise about both target onsets and offsets elicited cortical
transients in the beta-band. We consider them general dynamical
correlates of temporal surprise monitoring. In addition, stimulus
changes seem to have recruited additional processes expressed in
the very low (�5 Hz) frequency range.

Finally, we asked whether the trial-to-trial fluctuations in
beta-power modulations also predicted trial-to-trial variations in
subjects’ (log-transformed) RTs. Here, we used the Pearson cor-
relation values (i.e., without regressing out RT; see Materials and
Methods). Just as surprise, beta-power in the cluster also robustly
predicted RT (Fig. 4E). These correlations were negative, as ex-
pected based on the negative correlation between surprise and
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MEG-power (Fig. 4A). We also compared the strength of this
correlation between MEG-power and RT to the strength of the
correlation between surprise and RT across, this correlation
between correlations was positive, but not significant (r �
0.19, p � 0.33).

No robust correlations between MEG baseline power
and entropy
We did not find any evidence for a correlation of the raw baseline
(�0.5 to 0 s with respect to stimulus change) MEG power with
uncertainty, as measured in entropy. Correlations between en-
tropy and MEG power spectra in the time window before stimu-
lus change did not result in any significant (sensor-frequency)
clusters that survived multiple-comparison correction (data not
shown). It is likely that this lack of robust correlation reflected the
continuous reduction in trial-to-trial variations of entropy over
the course of each block (Fig. 2C).

Discussion
In this study, we comprehensively mapped cortical transients
elicited by surprise about the timing of sensory events. We used a
Bayesian updating model to estimate trial-to-trial variations of
surprise and correlated these to subjects’ behavior as well as to
neural dynamics, across the cortical surface. The model-derived
surprise estimates predicted across-trial and environment varia-
tions in RT. The surprise estimates also predicted transient sup-
pressions of low-frequency and beta-band power in a widespread
network comprising motor-, prefrontal, and parietal cortical re-
gions, predominantly in the left hemisphere. The model-derived
surprise estimates were more closely related to both behavior and
cortical dynamics than the mere trial-to-trial variations in exter-
nally observable interval timings.

The signatures of surprise we uncovered in the beta frequency
band were quite similar around target onset and offset (Fig. 5).
This stands in sharp contrast to the opposite beta-band modula-
tion during (illusory or veridical) target disappearances and re-
appearances, proposed to reflect a decision-related feedback
signal to in visual cortex (Meindertsma et al., 2017). The beta-
band transients identified here likely reflected a distinct process
that did not encode the content of the perceptual change, but
rather the level of surprise about it.

One possibility is that surprise is computed in those fronto-
parietal cortical networks exhibiting the surprise-related modu-
lation of beta-oscillations observed here. Another possibility is
that the surprise-related modulations are inherited from other
regions projecting to those frontoparietal networks. Indeed, neu-
romodulatory brainstem systems are a prominent candidate
source. In particular the dopaminergic and noradrenergic sys-
tems are driven by temporal expectation and surprise (Aston-
Jones and Cohen, 2005; Dayan and Yu, 2006; Fiorillo et al., 2008).
Further, there is mounting evidence for a link between neuro-
modulation and beta-band power in visual cortex (Belitski et al.,
2008; Donner and Siegel, 2011; Safaai et al., 2015; Zaldivar et al.,
2018).

Specifically, phasic responses in dopaminergic nuclei, encode
not only reward, but also the expected timing of reward arrival.
The strength of these phasic neuronal responses inversely scales
with predictability of the timing of reward, in line with encoding
surprise about reward arrival, and it also predicted behavioral
anticipation of reward (i.e., licking behavior) in monkeys (Fior-
illo et al., 2008). Our current study complements this previous
work, by unraveling the cortex-wide dynamics elicited by surpris-

ing events. Our design did not involve rewards but rather neutral,
yet behaviorally relevant sensory events.

In a previous report based on the same dataset as the current
one (Kloosterman et al., 2015a), we showed that mean pupil
dilation responses during the perceptual changes scaled in ampli-
tude across the three environments in line with mean surprise as
shown in the current Figure 2H. Pupil dilation is closely linked to
phasic responses in neuromodulatory brain systems, in particular
the noradrenergic locus ceruleus (Joshi et al., 2016; Reimer et al.,
2016; de Gee et al., 2017). Thus, if the surprise-related modula-
tions of cortical activity observed here were driven by phasic
neuromodulation, one would expect to find correlations between
single-trial pupil responses and surprise (Preuschoff et al., 2011;
Nassar et al., 2012). Due to the sluggish dynamics of the periph-
eral pupil apparatus (Hoeks and Levelt, 1993; de Gee et al., 2014),
testing for trial-by-trial correlations between pupil dilations and
surprise (or, likewise, between baseline pupil diameter and un-
certainty) in our experiment requires dedicated analysis ap-
proaches that tease apart fluctuating baseline levels and responses
evoked by individual events. Using a general linear model (Hoeks
and Levelt, 1993; de Gee et al., 2014), we failed to obtain reliable
single-trial pupil responses and correlations to single-trial sur-
prise (data not shown). This failure was likely, at least in part, due
to the rapid nature of the current experimental design. Future
work should use more widely spaced intervals to test whether
pupil dilations reflect trial-to-trial variations of surprise.

Our current study provides a comprehensive picture of the
cortical transients elicited by surprise, by systematically mapping
these transients across the cortical surface and time-frequency
plane. Previous work in humans has also studied neural corre-
lates of model-derived measures of surprise, although this en-
tailed surprise about stimulus identity, and not timing.
Electrophysiological work found surprise about cue identity to
modulate the P3 component of the EEG event-related potential
as well as motor cortical excitability (Bestmann et al., 2008; Mars
et al., 2008). Functional magnetic resonance imaging work linked
surprise about the spatial location of stimuli to transients in pos-
terior parietal cortex (O’Reilly et al., 2013). An EEG study disso-
ciated oscillatory neural signatures of surprise and evidence
accumulation (Gould et al., 2012). This latter study also found
surprise-related modulation of beta-band power primarily at
frontal and parieto-occipital electrodes, but the underlying cor-
tical distribution was not estimated. Future studies of surprise in
other domains (e.g., about cue identity) should use a similar
approach to assess whether surprise-related cortical transients
are domain-general or -specific. Further, simultaneous EEG and
MEG recordings (Schurger et al., 2015) are necessary to unravel
the relationship between surprise-linked modulations of fronto-
parietal beta-band oscillations and of the P3 component.

Another line of work has investigated the functional role of
externally entrained low-frequency oscillations in temporal ex-
pectation. For fixed intervals, alpha phase in sensory cortices was
found to be predictive of expected time of target arrival and low-
ered the threshold for sensory detection (Lakatos et al., 2008;
Cravo et al., 2011, 2013; Rohenkohl and Nobre, 2011). Alpha
oscillations might reflect rhythmic fluctuations in cortical excit-
ability, entrained by rhythmic sensory input, which aids stimulus
processing and perceptual performance (Schroeder and Lakatos,
2009). The high variability in interval durations (see Fig. 1B,C,
inset) might explain the lack of alpha-band effects in our study.
First, the range of possible durations was too broad to form pre-
dictions that fall within a specific phase of an alpha cycle. Second,
even when oscillatory phase was modulated by temporal expec-
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tation in our task, the trial-to-trial variability would make it dif-
ficult to align trials and make these modulations visible.

It is tempting to relate our results to conceptual accounts of
the functional role of beta-band oscillations in the brain (Engel
and Fries, 2010; Spitzer and Haegens, 2017). One account (Engel
and Fries, 2010) holds that beta-band oscillations help maintain
the current sensorimotor or cognitive state (termed the “status
quo”). Another account (Spitzer and Haegens, 2017) holds that
beta-band oscillations help activate the currently relevant task
sets. In both frameworks, the need for maintaining the current
status quo, or task set, is low when surprise (the violation of
expectation, or probability of change in the environment) is high,
in line with our observation of a suppression of beta-band oscil-
lations under high surprise.

Although our current work presents an important first step
toward unraveling the modulation of cortical dynamics by sur-
prise, it is limited in that we only studied environments with
constant statistical structure within each block. Once a posterior
distribution has been learned, there remains no unexpected un-
certainty, only expected uncertainty (Yu and Dayan, 2005). By
contrast, the statistical structure of natural environments is often
volatile. Richer experimental designs, that are volatile and in-
clude unmarked changes, allow for probing into richer, presum-
ably hierarchical dynamics (Sugrue et al., 2004; Nassar et al.,
2012; Meyniel et al., 2015). A more volatile task-environment
would also lead to an increase in trial-to-trial variability of our
entropy measure, providing a better-suited context to study the
effects of this type of uncertainty on cortical processing. Our
ongoing work aims to push beyond these limits by using richer
environmental statistics that require more complex inference
processes.

To conclude, we here uncovered a novel signature of temporal
surprise that affected an elementary perceptual decision (target
detection) and was characterized by a temporally focal, but spa-
tially widespread, modulation of cortical population activity.
This modulation might be instrumental in translating inferences
about the behaviorally relevant temporal structure into its con-
sequences for action.
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