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Abstract  30 

Perceptual decision-making is biased by previous events, including the history of preceding choices: 31 

Observers tend to repeat (or alternate) their judgments of the sensory environment more often than 32 

expected by chance. Computational models postulate that these so-called choice history biases result 33 

from the accumulation of internal decision signals across trials. Here, we provide psychophysical 34 

evidence for such a mechanism and its adaptive utility. Male and female human observers performed 35 

different variants of a challenging visual motion discrimination task near psychophysical threshold. In a 36 

first experiment, we decoupled categorical perceptual choices and motor responses on a trial-by-trial 37 

basis. Choice history bias was explained by previous perceptual choices, not motor responses, 38 

highlighting the importance of internal decision signals in action-independent formats. In a second 39 

experiment, observers performed the task in stimulus environments containing different levels of auto-40 

correlation and providing no external feedback about choice correctness. Despite performing under 41 

overall high levels of uncertainty, observers adjusted both the strength and the sign of their choice 42 

history biases to these environments. When stimulus sequences were dominated by either repetitions 43 

or alternations, the individual degree of this adjustment of history bias was about as good a predictor 44 

of individual performance as individual perceptual sensitivity. The history bias adjustment scaled with 45 

two proxies for observers’ confidence about their previous choices (accuracy and reaction time). 46 

Taken together, our results are consistent with the idea that action-independent, confidence-47 

modulated decision variables are accumulated across choices in a flexible manner that depends on 48 

decision-makers’ model of their environment. 49 

 50 

Significance statement: 51 

Decisions based on sensory input are often influenced by the history of one’s preceding choices, 52 

manifesting as a bias to systematically repeat (or alternate) choices. We here provide support for the 53 

idea that such choice history biases arise from the context-dependent accumulation of a quantity 54 

referred to as the decision variable: the variable’s sign dictates the choice and its magnitude the 55 

confidence about choice correctness. We show that choices are accumulated in an action-56 

independent format and a context-dependent manner, weighted by the confidence about their 57 

correctness. This confidence-weighted accumulation of choices enables decision-makers to flexibly 58 

adjust their behavior to different sensory environments. The bias adjustment can be as important for 59 

optimizing performance as one’s sensitivity to the momentary sensory input. 60 
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 61 

Introduction 62 

It has been known for almost a century that people’s judgments of sensory stimuli do not only depend 63 

on the current sensory input, but also on their preceding choices (Fernberger, 1920). Several studies 64 

have found that humans and other species repeat (or alternate) their perceptual judgments more often 65 

than expected by chance (Gold et al., 2008; Busse et al., 2011; de Lange et al., 2013; Akaishi et al., 66 

2014; Fischer and Whitney, 2014; Fründ et al., 2014; Abrahamyan et al., 2016; Pape and Siegel, 67 

2016; St. John-Saaltink et al., 2016; Fritsche et al., 2017; Hwang et al., 2017; Urai et al., 2017). Such 68 

choice history biases occur also in other domains of decision-making (Leopold et al., 2002; Allefeld et 69 

al., 2013; Padoa-Schioppa, 2013).   70 

 Computational models posit that choice history biases result from the temporal accumulation of 71 

signals from past decisions (Yu and Cohen, 2009; Glaze et al., 2015; Bonaiuto et al., 2016). Such a 72 

mechanism may serve to continuously update the decision-makers’ prior belief about the upcoming 73 

stimulus category and adjust their choice behavior to structured environments (Yu and Cohen, 2009; 74 

Glaze et al., 2015). In laboratory perceptual tasks, stimulus sequences are typically uncorrelated by 75 

design, so that across-trial accumulation degrades performance (Abrahamyan et al., 2016). By 76 

contrast, when stimulus sequences exhibit auto-correlations (Goldfarb et al., 2012; Glaze et al., 2015; 77 

Abrahamyan et al., 2016; Kim et al., 2017), history biases should improve performance, provided that 78 

the accumulation is context-dependent. Specifically, the accumulation should switch sign between 79 

environments dominated by either stability or change (Glaze et al, 2015). 80 

 Perceptual decisions often have to be made under uncertainty due to weak or ambiguous 81 

evidence. This uncertainty (or its complement: confidence) might be important for controlling behavior 82 

under conditions, in which the decision-maker receives no immediate external feedback. Indeed, 83 

fluctuations of confidence play a key role in a normative model, which postulates the accumulation of 84 

the internal decision variable over time (Glaze et al, 2015). The decision variable is the basis of both 85 

the categorical choice (Bogacz et al., 2006; Gold and Shadlen, 2007) as well as the confidence about 86 

its correctness (Kepecs et al, 2008). Correlates of the decision variable are distributed across many 87 

brain regions (Gold and Shadlen, 2007; Siegel et al., 2011; Brody and Hanks, 2016) and expressed as 88 

motor plans (Gold and Shadlen, 2007; Donner et al., 2009; de Lange et al., 2013) or in action-89 

independent formats (Bennur and Gold, 2011; Hebart et al., 2012; O’Connell et al., 2012; Hebart et al., 90 
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2016). These decision-related neural signals also reflect the graded confidence about the choice 91 

(Kiani and Shadlen, 2009; Hebart et al., 2016).  92 

 Our current study addressed three questions. First, do choice history biases originate from 93 

signals in motor or action-independent formats? Second, can these signals be accumulated in a 94 

sufficiently flexible manner, so as to adjust history biases to repetitive as well as alternating 95 

environments? Third, is the strength of such bias adjustment scaled by confidence? We modeled 96 

human choice behavior under experimental manipulations tailored to answering these questions.  97 

 98 

Materials and Methods 99 

Participants 100 

We analyzed data from 28 participants and two experiments (referred to as Experiment 1 and 2) in 101 

total. All participants gave their written informed consent.  102 

 103 

Experiment 1  104 

Six healthy participants (2 male and 4 female, mean age: 25; range: 22–29 years) took part in the 105 

experiment, which was approved by the ethics committee of the Department of Psychology of the 106 

University of Amsterdam (reference number 2011-OP-1588).  107 

 108 

Experiment 2  109 

26 healthy participants (11 male and 15 female, mean age: 26, range: 20 - 36) took part in the 110 

experiment, which was approved by the local ethical review board (Ärztekammer Hamburg, reference 111 

number PV4714). Four participants were excluded from the data analysis, so that 22 participants 112 

remained for the data analysis. Three of the excluded participants did not complete all sessions and 113 

one exhibited substantially worse performance than the rest of the group (64 percent correct overall, 114 

63 percent correct for the easiest three motion coherence levels).  115 

 116 

 117 

Experimental design 118 

The data from both experiments allowed for quantifying choice history biases during a random dot 119 

motion discrimination (up vs. down) task. We used large random dot motion patterns in both 120 

experiments, so as to minimize stochastic fluctuations in the effective motion energy across trials (Urai 121 
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et al., 2017). 122 

 123 

Experiment 1 124 

The following description summarizes the aspects of the experimental design that were most 125 

important to the current paper; a comprehensive description can be found in (Tsetsos et al., 2015). 126 

Random dot kinematograms (Figure 1A) were composed of 785 (average) white dots on a black 127 

screen. The dots were moving within a circular aperture of 9.1° radius. A red fixation cross of 0.4° x 128 

0.4° was centered in the middle of the circle. The dot density was 12.07 dots per deg2. The population 129 

of dots was split into “signal dots” and “noise dots”. The signal dots moved either upwards or 130 

downwards with a velocity of 2.6°/s. The noise dots changed position randomly from frame to frame. 131 

The percentage of signal dots defined the motion coherence, a measure of motion strength. On each 132 

trial, three different sequences of dot motion (at the same coherence and direction) were presented in 133 

an interleaved fashion, making the effective speed of signal dots 0.87 °/s. One of six different levels of 134 

motion coherence, (0.05, 1.26, 3.15, 7.92, 19.91 and 50%) and one of six different viewing durations 135 

(150, 300, 600, 1200, 2400, and 4800 ms) were chosen randomly, under the constraint that they 136 

occurred equally often within a block of 144 trials. Stimuli were presented on a 22-inch CRT monitor 137 

with a resolution of 800 x 600 pixel and a frame rate of 100 Hz at a viewing distance of 68 cm. The 138 

participants were instructed to maintain their gaze on the red cross throughout the trial and judge the 139 

net motion direction. The motion viewing interval was followed by a variable delay (uniform distribution 140 

ranging from 200 to 400 ms), after which the observers had to report their choice by pressing one of 141 

two buttons on a computer keyboard, with either the left or the right index finger. Participants received 142 

auditory feedback after incorrect responses (a 1000 Hz tone of 100 ms). Perceptual choices (‘up’ vs. 143 

‘down’ motion direction) were decoupled from motor responses (left vs. right button press) by varying 144 

their mapping from trial to trial. This mapping was instructed before motion viewing in one condition 145 

(‘Pre’ condition) and after motion viewing in the other (‘Post’ condition), by means of a visual cue that 146 

presented each direction (as an arrow) on the left or right side (i.e. two possible mappings). This 147 

mapping cue was randomly selected on each trial. Conditions alternated across blocks. Observer 1-5 148 

participated in both conditions. Observer 6 participated only in the Post condition. The analyses of 149 

participants 1-5 presented here were collapsed across both conditions. We obtained the same pattern 150 

of results when analyzing the data from both conditions separately (data not shown).  151 

 152 
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Experiment 2 153 

To test for the adaptability of choice history biases, we manipulated the sequential stimulus statistics 154 

between experimental sessions, to make people perform the task in ‘Repetitive’, ‘Neutral’ (no 155 

sequential dependence), or ‘Alternating’ environments (Figure 1B). Stimuli, task, and procedure for 156 

Experiment 2 were identical to Experiment 1, with the following exceptions. The circle within which the 157 

dots were moving had an outer radius of 12° and an inner radius of 2°. The density of dots was 1.7 158 

dots/deg2 and each dot had a diameter of 0.2°. The dots moved with a velocity of 11.5°/s. Signal dots 159 

had a maximum lifetime of 6 frames. We used the following coherence levels: 0, 5, 10, 20, 40 and 160 

60% (equally many trials per coherence level). A red bulls-eye fixation target at the center of the 161 

screen as well as randomly moving dots (0% coherence) were presented throughout each block. The 162 

first trial of each block started with a baseline interval of 5 s. A beep (duration: 50 ms, sine wave at 163 

440 Hz) indicated the onset of the evidence interval with variable coherence levels and directions (see 164 

above) after a fixed duration of 0.75 s. A second beep indicated the offset of the evidence interval and 165 

prompted the observers’ response. Observers reported their perceptual choices by pressing one of 166 

two keyboard buttons, with the index finger of the left or right hand. After button press or a response 167 

deadline of 3 s, the inter-trial interval started. Inter-trial intervals were uniformly distributed between 1 168 

and 5 s. Observers received auditory feedback during the training sessions, but no feedback during 169 

the subsequent six sessions of the main experiment. The motion viewing duration of 0.75 s was 170 

selected because previous work in monkeys (Kiani et al., 2008) and humans (Tsetsos et al., 2015) 171 

found little integration of motion information beyond that duration. We used a fixed mapping between 172 

choices and motor responses, whereby the two possible mappings (right-hand button for up, left-hand 173 

for down, or vice versa) were counterbalanced across participants. Experiment 2 consisted of seven 174 

sessions per participant (one for training and six main sessions), whereby each session was divided 175 

into 10 blocks of 60 trials. 176 

 Critically, the transition probabilities between the two alternative stimulus categories (i.e. up vs. 177 

down regardless of coherence) over trials were manipulated across experimental sessions (Figure 1B, 178 

right). Specifically, the probability of a repetition was defined as  179 

180 

,   eq. 1 181 

 whereby n indexes trials. The repetition probability was held constant within each session, but varied 182 

across the main experimental sessions between the following values: 0.5 in the ‘Neutral’ condition, 0.8 183 



Confidence-dependent accumulation of decision variables  Braun et al. 

  
7 

in the ‘Repetitive’ condition, and 0.2 in the ‘Alternating’ condition. The Neutral condition allowed for 184 

quantifying observers’ intrinsic choice history bias, which we used as a baseline for quantifying their 185 

adjustment to the biased sequential statistics of the Repetitive and Alternating conditions. 186 

 During the training session, the motion direction on each trial was chosen randomly and 187 

independently. All participants started with the Neutral condition in session 1 of the main experiment, 188 

which was repeated in session 4. Half of the participants then performed the Repetitive condition in 189 

sessions 2 and 5 and the Alternating condition in sessions 3 and 6 and conversely for the other half of 190 

participants.  191 

 Observers were instructed to maintain stable fixation and perform the motion discrimination task 192 

as accurately as possible. They were informed that the sequential statistics of the stimulus identities 193 

would change from session to session, but stay constant within each session. To this end, we told 194 

them that the stimulus sequences could be ‘as if produced by a coin flip’ (Neutral), ‘more likely 195 

repeating than alternating’ (Repetitive), or ‘more likely alternating than repeating’ (Alternating). 196 

Observers were not informed about (i) the order of these conditions, (ii) the exact transition 197 

probabilities, (iii) the use of this information for optimizing their behavioral performance. 198 

 199 

Modeling choice history bias 200 

We used logistic regression to model observers’ choice history biases under the different experimental 201 

conditions. The basic approach consisted of adding a linear combination of different components of 202 

trial history (which depended on the experiment), as a bias term to a logistic function model of the 203 

choice probability (Fründ et al., 2014; Urai et al., 2017). We here used a variant that quantified the 204 

relative contributions of previous stimuli, choices, and (for Experiment 1) motor responses.  205 

 206 

 207 

Basic choice model using psychometric function fit  208 

The probability of making one of the two choices  (  for ‘choice up’,  for ‘choice 209 

down’) on trial t, given the signed stimulus intensity  (i.e., motion coherence times stimulus category) 210 

(up or down, coded as 1 and -1) was described by:  211 

,    eq. 2 212 

where  and  were the lapse rates for the choices  and , and   was the 213 

logistic function. The bias term , the offset of the psychometric function, described the overall bias for 214 



Confidence-dependent accumulation of decision variables  Braun et al. 

  
8 

one specific choice.  was the slope of the stimulus-dependent part of the psychometric function, 215 

quantifying perceptual sensitivity. 216 

 For visualizing the effect of previous on current choice (Figure 1D), we separated the trials from 217 

Neutral into two subsets, conditioned on the choice from the previous trial, and fitted the psychometric 218 

function separately to the observed proportion of upward choices in both subsets. Results from three 219 

example observers are shown in Figure 1D and discussed in Results. 220 

 221 

Modeling the contributions of past stimuli, choices, and motor responses to current choice bias 222 

We estimated the contribution of the previous seven stimulus categories and choices by adding a 223 

history-dependent bias term to the argument of the logistic function (Fründ et al., 2014): 224 

 eq. 3 225 

    eq. 4 226 

The history bias  consisted of the sum of the preceding seven responses  to 227 

 and the preceding seven stimulus categories  to , each multiplied with a weighting factor 228 

. The vector  was written as: 229 

. 230 

All terms in  were coded as -1 or 1, with the exception of terms coding for stimuli with zero 231 

coherence, which were set to zero. The weighting factors  thus modeled the influence of each of the 232 

seven preceding responses and stimulus categories on the current choice. Positive values of  233 

indicated a bias to repeat the choice or stimulus category at the corresponding lag, and negative 234 

values of  indicated a tendency to alternate. In this and all subsequent analyses, the parameters of 235 

the logistic regression model were fit by maximizing the log-likelihood  using 236 

an expectation maximization algorithm (Fründ et al., 2014). 237 

 In Experiment 1, perceptual choices and motor responses were further decoupled through a 238 

mapping that varied from trial to trial. Thus, we could independently estimate the relative contribution 239 

of previous choices and motor responses to the current choice bias. We added the last seven choices 240 

, each one multiplied with a separate set of history weights , to the 241 

history bias term .  242 

   eq. 5 243 

Experiment 1 contained not only trial-to-trial variations in motion direction and coherence, but also in 244 

the duration of the dot motion stimulus. To assess the effect of this manipulation, we first fitted the 245 
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psychometric functions separately for each of the six different motion-viewing durations (on the current 246 

trial) and compared the resulting weights within each observer. The viewing duration had only 247 

negligible impact on the history weights (data not shown), indicating that the history contributions were 248 

invariant across viewing durations. Consequently, we fitted the psychometric functions to the data 249 

from all trials, and analyzed the history weights, irrespective of viewing duration.  250 

 Experiment 1 also contained two conditions (Pre and Post), in which observers were instructed 251 

about the required mapping between choice and response either before or after the presentation of 252 

the sensory evidence. The analyses presented in Results collapsed across both conditions, but we 253 

also verified that there were no differences between these conditions when analyzing them separately 254 

(data not shown).  255 

 256 

Modeling the contributions of past correct (and incorrect) choices to current bias 257 

The weights for previous correct and incorrect choices were estimated by re-combining the weights for 258 

previous stimuli and choices estimated by means of equations 3 and 4. Specifically, the weights for 259 

correct choices were computed as the sum of choice and stimulus weights and the weights for 260 

incorrect choices were computed as the difference between choice and stimulus weights (Fründ et al., 261 

2014). Please note that this is equivalent to fitting a regression model with predictors encoding correct 262 

or incorrect choices, along with the chosen category (Busse et al, 2011; Abrahamyan et al, 2016). 263 

 264 

Modeling the contribution of past decision confidence to current bias 265 

We used a model of statistical decision confidence based on signal detection theory (Kepecs et al. 266 

2008; Sanders et al. 2016; Urai et al. 2017) in order to define two behavioral proxies of confidence that 267 

could be used in the present study. The model assumes that choices are made based on an internal 268 

decision variable (dv), which is computed as a transformation of sensory input, corrupted by noise. A 269 

choice is made by comparing dv to a criterion c. Confidence is a function of the distance between dv 270 

and c. When dv is far from c, the choice is likely to be correct; the probability of the choice being 271 

correct approaches chance as dv approaches c. Specifically,  where 272 

 is a monotonic sigmoid function that maps the distance metric  on the 273 

probability of making a correct choice (Kepecs et al, 2008; Lak et al. 2014). The model predicts that 274 

confidence (i) is larger on correct than on error trials, and (ii) scales oppositely as a function of 275 

stimulus strength for correct and error trials. We used two behavioral proxies of the so-defined 276 
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confidence to investigate its impact on the adjustment of choice history biases: (i) Choice accuracy, 277 

with correct choices being associated with larger confidence than incorrect choices for all levels of 278 

evidence strength in the model described above; and (ii) reaction times (RT), which has been found to 279 

reflect decision confidence as defined above in empirical work (Sanders et al., 2016; Urai et al., 2017).   280 

 When assessing the confidence-dependence of the bias adjustment (i.e. changes in history 281 

weights), we restricted the model to the immediately preceding trial (lag 1), at which the bias 282 

adjustment was expected to be strongest, but we now estimated the weights separately for each of the 283 

different levels of previous motion coherence. This enabled us to control for the trial-to-trial variations 284 

of stimulus strength, thus isolating the impact of internal trial-to-trial fluctuations of confidence.  285 

 In our analysis of the impact of choice accuracy, separate predictors coded for the choice or 286 

stimulus categories for each level of (non-zero) previous motion coherence. Because choice accuracy 287 

was undefined at 0% coherence, we estimated a single choice weight for previous trials where no 288 

decision-relevant sensory evidence was presented. Specifically, we included six regressors in the 289 

model that each coded for the previous choice at a given coherence level (zero elsewhere) and we 290 

included five regressors that each coded for the previous stimulus category at a given non-zero 291 

coherence level (zero elsewhere). To assess the impact of choice accuracy, the stimulus and choice 292 

weights were transformed into weights for correct and incorrect choices by re-combining the stimulus 293 

and choice weights as described in the section Modeling the contributions of past correct (and 294 

incorrect) choices to current bias above.  295 

 To assess the effect of RTs, we first normalized RT to make it scale positively with confidence, 296 

because of its negative scaling with decision confidence (the shortest RTs correspond to the most 297 

confident trials (Sanders et al., 2016; Urai et al., 2017): For each observer and condition, we 298 

transformed single-trial RTs as follows: 299 

           eq. 6 300 

where  denoted z-scoring per individual and condition. This transformation was only applied to 301 

simplify the interpretation of the corresponding history terms in terms of confidence-weighting. Without 302 

this transformation, the resulting weights were qualitatively identical but sign-flipped, thus reflecting the 303 

complement to confidence, decision uncertainty (data not shown).  304 

 We added a modulation by the above-defined  variable to the logistic regression model, 305 

as introduced in (Urai et al., 2017). To this end, we added a term describing the interaction between 306 

choice and stimulus category at lag 1 with the previous trial’s  separately for each previous 307 
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coherence level: . Specifically, the interaction terms in this model were six 308 

regressors for previous choice multiplied by previous  (one for each coherence level) and five 309 

regressors for previous stimulus category multiplied by previous  (one for each non-zero 310 

coherence level), and a nuisance covariate  for the main effect of . The full 311 

bias term in this model was as follows: 312 

 313 

 eq. 7 314 

 315 

Modeling history contributions in synthetic, non-adjusting observers 316 

We performed two sets of simulations to ensure that the context-dependent shifts in the history 317 

weights exhibited by participants in Experiment 2 were not just passively ‘inherited from’ the correlated 318 

stimulus sequences in the Repetitive and Alternating conditions. The rationale of these simulations 319 

was to fit the behavior of synthetic observers. These were matched to the behavior of each of our 320 

participants in all parameters, except for the history weights displayed in the biased conditions.  321 

 In the first set of simulations, we constructed observers, who based their decisions only on the 322 

current stimulus. For each participant, we estimated the parameters of the psychometric function 323 

described by eqs. 3 and 4 from the data of the respective biased conditions. This ‘memory-less 324 

observer model’ was the set of fitted parameters, but with history bias  set to zero; it allowed 325 

us to compute the probability of making an ‘up’-choice ( ) for any given stimulus intensity in the 326 

absence of any influence of past events. To simulate the model’s performance in the two biased 327 

experimental conditions (Alternating and Repetitive), we used the original sequences of stimuli (motion 328 

coherences times directions) seen by each observer in these two conditions, and computed the choice 329 

probability for each trial by putting the model parameters and stimulus categories in eq.2. Based on 330 

these choice probabilities, we then drew the choices on each trial by a weighted coin-flip, resulting in a 331 

sequence of choices generated by the model. We then fitted this choice and stimulus sequence, again 332 

using the model specified in eqs. 3 and 4 allowing us to estimate the synthetic observers’ stimulus and 333 

choice weights. The resulting values served as a reference for the history biases expected as a result 334 

of discriminating a biased sequence of stimuli without memory. 335 

 The second set of simulations was as the first set of simulations, with the exception that the 336 

synthetic observers had the same (non-zero) history weights estimated for the real participants in the 337 

Neutral condition, but did not adjust these biases to the biased environments. Again, this enabled us 338 
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to simulate choice patterns of the synthetic observers exposed to the stimulus sequences used in our 339 

actual experiment, and to use these choice patterns to estimate the simulated observers’ choice and 340 

stimulus weights, as described for the first set. 341 

 In both sets of simulations, we presented the same stimulus sequence 50 times, to average out 342 

the effect of binomial noise that was needed to generate choices from the logistic function. This 343 

yielded more precise estimates of the model parameters than was possible in the human observers. 344 

 345 

Statistical tests 346 

We used parametric 2-tailed t-tests for all statistical comparisons of regression weights reported in this 347 

paper. The rationale was that we could then also provide Bayes factors (Bf), in order to quantify the 348 

posterior belief in the null hypothesis given the evidence (Rouder et al., 2009). Bf10 < 1/3 indicates 349 

evidence in favor of the null hypothesis, Bf10 > 3 indicates evidence for the alternative hypothesis, and 350 

Bf10 = 1 indicates inconclusive evidence. When performing multiple t-tests of regression weights (e.g., 351 

across seven lags or coherence levels), false discovery rate correction (Benjamini and Hochberg, 352 

1995) was applied to correct for multiple comparisons.  353 

 When testing correlation coefficients computed for individual participants (the so-called ‘adaptivity 354 

indices’ defined in Results) against zero, we first Fisher z-transformed the Pearson correlation 355 

coefficients and then submitted them to simple t-tests. We used the parametric 2-tailed Steiger’s test 356 

(Steiger, 1980) for comparing across-subjects correlations between individual adaptivitiy indices 357 

(correlation coefficients) and their proportion of correct choices with the corresponding correlations 358 

between individual perceptual sensitivity and the proportion correct choices.   359 

 Finally, we used circular statistics, specifically Rayleigh’s test, to assess the clustering of 360 

orientations of the lines connecting the weights from Neutral with those from either Repetitive or 361 

Alternating conditions, respectively. A Hotelling test (van den Brink et al., 2014) was used to assess 362 

the difference in mean directions of adjustment between these two conditions. 363 

  The results from all the all regression weights and individual adaptivity indices (correlation 364 

coefficients) in Experiment 2 were analogous when replacing the parametric tests with non-parametric 365 

permutation tests (Efron and Tibshirani, 1998) with N = 10.000 permutations.  366 

 367 

Results 368 

We here report results from two experiments (referred to as Experiment 1 and 2) quantifying choice 369 
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history biases during the random dot motion discrimination task that is widely used in 370 

neurophysiological studies of perceptual decision-making (Gold and Shadlen, 2007; Siegel et al., 371 

2011; Kelly and O’Connell, 2015). The two experiments aimed to manipulate different aspects of 372 

choice behavior. Analyses of behavior from Experiment 1 were previously published (Tsetsos et al., 373 

2015), but those analyses did not assess sequential effects. Here, we re-analyzed these data to 374 

quantify the dependence of choice on previous stimuli, choices, and motor responses.  375 

 Figure 1C and D illustrates behavioral patterns generated by choice history biases in example 376 

observers from the Neutral condition of Experiment 2 (i.e. no correlations among successive stimuli). 377 

Figure 1C shows, for one observer, a ‘streak’ of eight repeats of the same choice, followed by five 378 

repeats of the other choice. These streaks occur in the face of trial-to-trial variations of the direction of 379 

the random stimuli. Critically, such apparent biases towards one or the other choice emerge only 380 

locally in time. Choice history biases are therefore distinct from the ‘global’ biases towards one 381 

particular choice that result from uneven probabilities of the two stimulus categories or uneven payoffs 382 

for the two options (Bogacz et al., 2006; Mulder et al., 2012; de Lange et al., 2013). One way to isolate 383 

choice history biases is to fit, for each observer, two separate psychometric functions (relating signed 384 

stimulus strength to choice probability), each conditioned on the choice the observer made on the 385 

previous trial. Choice history biases are then evident as horizontal shifts between these two functions. 386 

Figure 1D displays the resulting functions of three example observers (Neutral condition from 387 

Experiment 2) with an intrinsic bias to repeat (left panel, same observer as in Figure 1C) or to 388 

alternate choices (right), or no bias (middle). A more comprehensive approach is to explicitly model 389 

the relative contribution of previous choices, or other experimental variables from previous trials, to 390 

current choice bias (Busse et al., 2011; Fründ et al., 2014) (see Materials and Methods, section 391 

Modeling choice history bias). We used this statistical modeling approach throughout this paper.  392 

 Our analyses pursued two main objectives. First, we aimed to disentangle and compare the 393 

contribution of decisional and motor processing stages to the history biases. Second, we aimed to 394 

quantify the adjustment of choice history biases to the environment, as a function of varying levels of 395 

decision confidence, in the absence of external feedback.   396 

 397 

Experiment 1: Disentangling the impact of previous stimuli, choices, and motor responses  398 

In laboratory tasks, perceptual choice and motor response used for reporting the choice are typically 399 

coupled, but can be decoupled with little effect on performance on the current trial (Tsetsos et al., 400 
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2015). While there is evidence for either decisional or motor origin of history biases (Akaishi et al., 401 

2014; Pape and Siegel, 2016; St. John-Saaltink et al., 2016), their relative contributions have not yet 402 

been systematically compared across several trials in the past. To do so, we reanalyzed data from a 403 

previously published study (Tsetsos et al., 2015), in which observers performed a random dot motion 404 

task under trial-to-trial variations in the mapping between choice and motor response. The direction of 405 

motion was chosen randomly and independently on each trial, so that maximizing performance 406 

required basing choices solely on the current stimulus and not on its history (i.e., previous stimuli, 407 

choices, or motor responses).  408 

 Observers showed a significant tendency to repeat their previous choices (indicated by positive 409 

choice weights), but not their motor responses (Figure 2A). The effect of the previous choice on 410 

current choice was positive and stronger than the effect of the previous motor response (Figure 2A). 411 

The response weights did not differ significantly from zero for any lag (Bf10 < 0.45 for all lags). 412 

Preceding stimulus categories (up/down) exhibited negative, albeit not statistically significant, weights 413 

at longer lags (Figure 2B), possibly reflecting the impact of long-lasting, repulsive effects of direction-414 

selective sensory adaptation mechanisms (Kohn, 2007) on choice behavior.  415 

 These results indicate that the commonly observed choice repetition biases are specifically due to 416 

previous choices and not the motor responses used to the report them, which has implications for their 417 

neural bases (see Discussion). We next investigated the adjustment of choice history biases (under 418 

fixed mapping) to varying environmental statistics in order to gain deeper insights into their functional 419 

origin and adaptive utility. 420 

 421 

Experiment 2: Confidence-dependent adjustment of choice history biases to the environment 422 

In laboratory tasks used to study perceptual choice, it is common to generate random sequences of 423 

the two alternative stimulus categories. But the states of natural environments, and hence the sensory 424 

signals generated by them, often exhibit significant auto-correlations across time, so that it might be 425 

beneficial for decision-makers to adjust their choice history biases to this correlation structure (Yu and 426 

Cohen, 2009). In Experiment 2, we tested for such adjustments, by systematically manipulating the 427 

repetition probabilities between the two possible motion directions across three conditions blocked by 428 

experimental session: Repetitive, Alternating, and Neutral (two sessions per condition; see Figure 1B 429 

and Materials and Methods). Importantly, observers received no external feedback about the 430 
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correctness of their choices. This enabled us to study the impact of their decision confidence on the 431 

adjustment of their choice history biases to environmental statistics.  432 

 433 

Adjustment of choice history biases to environmental statistics 434 

The manipulation of the environmental statistics had robust effects on observers’ history biases. We 435 

visualized those in two complementary ways focusing on different aspects of the data. Both our 436 

approaches were guided by the statistical structure of the Repetitive and Alternating conditions, which 437 

yielded characteristic profiles of the probability of stimulus repetitions as a function of lag: For both 438 

Repetitive and Alternating conditions, repetition probability was most strongly biased (i.e., different 439 

from 0.5) at lag 1, and progressively approaching 0.5 for larger lags (Figure 3A). Thus, the strongest 440 

effects were expected for events from the preceding trial (i.e., lag 1). 441 

  Our first approach, therefore, focused on the weights for lag 1. When plotting the choice weights 442 

against stimulus weights, data points located in the upper-right triangular part indicated a tendency to 443 

repeat the previous choice or stimulus categories (up/down), whereas data points in the lower-left 444 

triangular part indicated a tendency to alternate (Figure 3B, dashed diagonal line). If observers 445 

adjusted their choice patterns to the Repetitive and Alternating environments, their history weights 446 

should have shifted in the corresponding directions. This is what we observed (Figure 3B; compare 447 

dots of different colors). The weights were close to zero in the Neutral condition (group average, red 448 

‘x’); weights shifted towards repetition in the Repetitive condition (group average, green arrow in 449 

Figure 3B), and alternation in the Alternating condition (group average, blue arrow in Figure 3B), 450 

respectively. The vector angles of the shift from Neutral were significantly different from uniform (z = 451 

7.69, p = 0.0003 in Repetitive and z = 8.64, p < 0.0001 in the Alternating condition, Rayleigh’s test), 452 

and the shift angles were significantly different between Repetitive and Alternating (F(2, 20) = 60.28, p 453 

< 0.0001, Hotelling test). The adjustment of choice history bias was also evident when fitting the 454 

psychometric function conditioned on the previous choice (as in Figure 1D). Both conditions were 455 

characterized by a history-dependent shift, in opposite directions (Figure 3C; difference in shift 456 

between Repetitive and Alternating: t(21) = 3.21, p = 0.0042). By contrast, previous choice had no 457 

effect on the slope of the psychometric function (difference in history-dependent change in the slope 458 

between Repetitive and Alternating: t(21) = -0.60, p = 0.5532, Bf10 = 0.2627). 459 

 It is noteworthy that the direction of the shift of history weights between the different 460 

environmental statistics was largely along the positive diagonal (Figure 3B) that corresponds to equal 461 
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weights for previous stimuli and choices. Thus, the bias adjustment was largely driven by correct 462 

choices (where previous choices and stimuli were identical). We thus used the weight of previous 463 

correct choices (i.e., the sum of choice and stimulus weights, see Materials and Methods) in all 464 

subsequent analyses as a single metric of the bias adjustment. The importance of previous correct 465 

choice for the bias adjustment was indicative of the role of decision confidence, an aspect that we 466 

elaborate on in the section Modulation of choice history bias adjustment by decision confidence below. 467 

 Our second approach focused on an assessment of the full time courses of the history weights. 468 

The temporal profiles of the stimulus repetition probabilities in the two biased conditions exhibited 469 

markedly different patterns: In the Repetitive condition the temporal profile exhibited a monotonic 470 

decay towards 0.5, whereas it exhibited a damped oscillation around 0.5 in the Alternating condition 471 

(Figure 3A). The correlation between both time courses for Repetitive and Alternating conditions was 472 

negative. In what follows, we refer to these time courses as ‘history templates’, to indicate that these 473 

characterize the statistical structure of the environment.  474 

 Indeed, participants’ history weights exhibited profiles that were similar to those of the history 475 

templates (Figure 3D, compare with Figure 3A). We use the term ‘history kernel’ to refer to the 476 

individual courses of the weights for correct choices as a function of lag. We quantified their similarity 477 

with the corresponding history templates by means of temporal correlation (Figure 3E). These 478 

correlations were significant in both conditions (Repetitive: t(21) = 2.57, p = 0.0179, Alternating: t(21) = 479 

4.83, p < 0.0001). Thus, participants adjusted their history biases to the statistical structure of their 480 

environments with a time course matched to the full environmental statistics. In what follows, we refer 481 

to this similarity metric as ‘adaptivity index’. 482 

 One concern might be that even an observer who only discriminates the current sensory 483 

evidence, without any active accumulation of past experimental events, might exhibit similar shifts in 484 

the history weights between the Alternating and Repetitive conditions, by virtue of the stimulus 485 

statistics propagating into the history weights without any active adjustment of the observer. To 486 

address this concern, we simulated the performance of two types of synthetic observers, which were 487 

constructed individually for each of our participants. These had the same perceptual sensitivity as 488 

each participant, but without any adjustment of stimulus and choice weights to the different 489 

environmental conditions (see Materials and Methods). The first set of synthetic observers had 490 

stimulus and choice weights of zero. The second set of synthetic observers had the same history 491 

biases (i.e., non-zero choice and stimulus weights) as our participants in the Neutral condition, but did 492 
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not adjust these to the changing environmental statistics. The choice and stimulus weights obtained 493 

for both these models were not significantly different from zero (Figure 4A and B) (all p-values > 0.567 494 

and Bf10 ranging from 0.22 to 0.62).  495 

 These simulation results indicate that the effect of the correlations between stimuli on choice 496 

patterns was reliably soaked up by the stimulus-dependent part of our statistical model (i.e. the slope 497 

of the psychometric function). In other words, the systematic deviations of the history weights between 498 

Repetitive and Alternating conditions evident in the real observers were not just passively ‘inherited 499 

from’ the correlations evident in the stimulus sequences, but rather due to an active adjustment of their 500 

biases.  501 

 502 

 503 

 504 

History bias adjustment predicts performance in biased environments 505 

While the bias adjustment was highly consistent across participants, individuals differed in the extent 506 

to which they shifted their history biases between conditions (i.e., the magnitude of their adaptivity 507 

indices, Figure 3E). We correlated the individual adaptivity indices with the proportion of correct 508 

choices to assess their predictive value for overall task performance (Figure 5A). The more strongly 509 

observers adjusted, the more successful they were in both, the Repetitive (Figure 5A, left panel) and 510 

Alternating (middle) condition. We found no evidence for such an effect in the Neutral condition 511 

(Figure 5A, right, Bf10 = 0.4276). As expected, perceptual sensitivity (i.e., the slope of the 512 

psychometric function) was also strongly predictive of individual performance in all three conditions 513 

(Figure 5B).  In both biased environments the adaptivity index was similarly predictive of performance 514 

as perceptual sensitivity (Repetitive: Steiger’s test z = 0.28, p = 0.7791; Alternating: z = 0.4, p = 515 

0.6893), while sensitivity was a better predictor in the Neutral environment (z = 2.70, p = 0.0068). In 516 

other words, the adjustment to the environmental statistic can be about as important for maximizing 517 

reward rate as sensitivity to the momentary sensory evidence.  518 

 Taken together, our results reported so far supported the idea that participants accumulated 519 

internal signals from their previous correct decisions into biases for their current choice – a process 520 

that adjusted their behavior to the statistics of their environment and improved performance. Some 521 

previous accounts of sequential effects have postulated the accumulation of external variables, such 522 

as stimulus repetitions (Yu and Cohen, 2009; Meyniel et al., 2016), performance feedback 523 
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(Abrahamyan et al., 2016), or reward (Sugrue, 2004). Our experimental conditions precluded any of 524 

the above: Observers performed under generally high uncertainty about the veridical stimulus 525 

identities, and they did not receive external feedback about choice outcomes. We reasoned that, 526 

under these conditions, observers may have accumulated the internal decision variables, on which 527 

they based their choices in a context-dependent manner (i.e., with opposite sign for Repetitive and 528 

Alternating environments). This interpretation is in line with a normative model of sequential effects 529 

(Glaze et al, 2015). In statistical decision theory, as well as in neural signals observed in the brain, the 530 

decision variable not only encodes the categorical choice, but also the graded confidence about that 531 

choice (Kepecs et al., 2008; Kiani and Shadlen, 2009; Hebart et al., 2016). Consequently, we 532 

reasoned that the impact of previous choices on current bias should depend on the confidence 533 

associated with the previous choices. Our final set of analyses tested this hypothesis. 534 

Modulation of choice history bias adjustment by confidence  535 

We here use the term ‘decision confidence’ in a statistical sense, to refer to the posterior probability 536 

that a choice is correct, given the evidence (Kepecs et al., 2008; Pouget et al., 2016; Sanders et al., 537 

2016; Urai et al., 2017). The key features of a model formalizing this construct are reproduced in 538 

Figure 6A (Kepecs et al., 2008; Sanders et al., 2016; Urai et al., 2017; see Methods). This definition of 539 

confidence is agnostic about the link to the subjective sense of confidence, or the ability to report this 540 

sense of confidence (but see Sanders et al, 2016). 541 

 We used two experimental variables consistent with this definition of confidence: accuracy and 542 

RT. Correct choices are overall associated with higher confidence for all non-zero evidence strengths 543 

(i.e., coherence levels, Figure 6A, top). The scaling of RT with motion coherence exhibited the same 544 

characteristic signature as uncertainty (i.e., the complement of confidence) as reported in previous 545 

studies (Sanders et al., 2016; Urai et al., 2017): RT decreased with coherence for correct choices, but 546 

increased for incorrect choices (Figure 6D, compare to Figure 6A). Linear regression revealed an 547 

opposite-signed relationship between motion coherence and RT, separately for correct (  = -0.150, 548 

s.e.m. = 0.027, p = 0.005) and error trials (  = 0.628, s.e.m. = 0.025, p = 0.025).  549 

 As predicted, the leverage of the preceding choice on bias adjustment (i.e., difference between 550 

Repetitive and Alternating) was larger when the previous choice was correct than incorrect, even 551 

when controlling for the level of previous motion coherence (Figure 6B, C). There was a significant 552 

effect of previous correct choice at all of the previous coherence levels, while there was no such effect 553 
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for previous incorrect choices at any of the previous coherence levels (Figure 6B; Bf10:  0.23, 0.69, 554 

0.23, 0.34, and 0.28 for previous coherence levels: 0.05, 0.1, 0.2, 0.4, and 0.6, respectively).  555 

 When pooled across previous coherence levels, the weights for previous correct choices deviated 556 

significantly from zero in both conditions (Figure 6C; Repetitive: t(21) = 2.58, p = 0.0174; Alternating: 557 

t(21) = -4.42, p = 0.0002). Again there was no such effect for previous errors (Figure 6C; Repetitive: 558 

t(21) = -0.13, p = 0.8985, Bf10 = 0.22; Alternating: t(21) = 0.35, p = 0.7309, Bf10 = 0.24). The weights 559 

were significantly larger for correct than incorrect previous choices in Repetitive (t(21) = 3.06, p = 560 

0.0060, and the other way around in the Alternating (t(21) = -5.19, p < 0.0001Figure 6C). Please note 561 

that while the weights were averaged across previous coherence levels for visualization in Figure 6C, 562 

they were first estimated separately for each previous coherence in order to factor out effects of trial-563 

to-trial fluctuations in sensory evidence strength (see Materials and Methods). These results were 564 

qualitatively identical after random subsampling of the correct trials, so as to match the smaller 565 

number of incorrect trials for each previous coherence level (data not shown), ruling out the concern 566 

that the stronger bias adjustment after correct choices may have been due to the larger number of 567 

correct than error trials. In sum, these results were consistent with the idea that the weight of choices 568 

in the across-trial accumulation process depended on internal (i.e., stimulus-independent) fluctuations 569 

in decision confidence. 570 

 To assess the modulatory effect of the second confidence proxy, RT, on the bias adjustment, we 571 

built on an extension of the statistical model by multiplicative interaction terms. This quantified the 572 

degree to which the impact of previous correct choices on current bias was modulated by previous RT 573 

(see Materials and Methods for details). In these model fits, we transformed RT to scale positively with 574 

decision confidence, a variable we refer to as  (Materials and Methods). Again, we split trials 575 

by their motion coherence to assess the modulatory effect of  on the impact of correct choices 576 

(i.e. the weights for the interaction term ), over and above variations in evidence 577 

strength.  578 

 Larger values of  were associated with a stronger impact of the previous (correct) choice 579 

on the current bias (Figure 6E, F), an effect that was robust even when we evaluated each previous 580 

coherence level separately (Figure 6E). When pooled across previous coherence levels, the 581 

interaction weight was significantly larger than zero in the Repetitive condition (Figure 6F; t(21) = 3.84, 582 

p = 0.0009), indicating a confidence-dependent enhancement of the tendency to repeat correct 583 

choices in that condition. Conversely, the interaction weight was significantly smaller than zero in the 584 
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Alternating condition (Figure 6F; t(21) = -3.71, p = 0.0013), indicating a confidence-dependent 585 

enhancement of the tendency to alternate correct choices. Thus, even within the correct choices, 586 

evidence-independent fluctuations in the associated confidence (indexed by ) boosted their 587 

impact on future choice bias. 588 

 Taken together, two independent proxies of decision confidence, choice accuracy and reaction 589 

time, both supported the conclusion that decision confidence boosted the adjustment of choice history 590 

biases to the structure of the environment.  591 

 592 

 593 

 594 

Discussion  595 

Choice history biases are a pervasive phenomenon in perceptual decision-making (Fernberger, 1920; 596 

Fründ et al., 2014). Here, we showed that these biases were largely dominated by categorical choices 597 

rather than motor responses and could be flexibly adjusted to environmental statistics even in the 598 

absence of feedback about choice outcome. In line with recent normative accounts, the strength of 599 

this adjustment was modulated by previous decision confidence. In environments with strong 600 

sequential structure it governed individual performance to a similar extent as perceptual sensitivity. 601 

Taken together, our results yield new insights into the functional origins and adaptive utility of choice 602 

history biases, with direct implications for their neural bases.  603 

 An important novel contribution of our study is the discovery of a confidence-weighted adjustment 604 

of choice history biases to changing environments. We propose that this was due to a context-605 

dependent accumulation of decision variables across trials. A similar accumulation process has been 606 

proposed to explain sequential effects under strong and unambiguous evidence (Yu and Cohen, 2009; 607 

Meyniel et al., 2016). Consequently, those latter models describe the accumulation of external 608 

observables rather than internal decision variables. The latter are often dissociated from external 609 

observables when the decision-maker is uncertain about the environmental state due to degraded 610 

evidence. While temporal accumulation is a widely established mechanism in perceptual choice 611 

(Bogacz et al., 2006; Gold and Shadlen, 2007; Ratcliff and McKoon, 2008; Wang, 2008; Ossmy et al., 612 

2013), previous models focus on the within-trial accumulation of the momentary sensory evidence. 613 

Across-trial accumulation of information is long established in the theory of reinforcement learning, but 614 

there it pertains to the accumulation of rewards (i.e., external signals about choice outcome) and 615 
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spans substantially longer timescales than sensory evidence accumulation (Sutton and Barto, 1998; 616 

Sugrue, 2004; Glimcher, 2011). Our current results are indicative of an accumulation mechanism that 617 

operates (i) with a timescale situated in between those established for sensory evidence accumulation 618 

and action value learning, and (ii) on internal decision variables, which themselves result from the 619 

faster (within-trial) accumulation of sensory evidence. 620 

Such a context-dependent across-trial accumulation of decision variables has been postulated by 621 

a recent normative account (Glaze et al., 2015), and shown to account for history biases in simple 622 

saccadic choice (Kim et al., 2017). Little is currently known about the neural basis of this process. Our 623 

current work sets the stage for probing into its neural basis, by experimentally establishing key 624 

behavioral hallmarks of this accumulation process within the most widely used task in the 625 

neurophysiology of perceptual decision-making (Gold and Shadlen, 2007; Siegel et al., 2011; Kelly 626 

and O’Connell, 2015). It will now be important to explore the underlying mechanisms through direct 627 

recordings of neural activity under conditions as used here.  628 

One recent study provided similar evidence for an effective adjustment of human observers to 629 

changing environmental statistics (Abrahamyan et al., 2016). Our current results and those from 630 

Abrahamyan et al (2016) complement each other in quantifying the adaptability of human choice 631 

history biases. In Abrahamyan et al. the nature of the change in the environment was different from 632 

the one we have used here: In their study, observers received unambiguous feedback about the 633 

outcome of each choice, and the manipulation of the stimulus sequence depended on the participants’ 634 

success or failure. Consequently, the process adjusting history biases likely depended on the 635 

combination of choices and their outcome. By contrast, in our study, the environments differed in their 636 

statistical structure independent of observers’ choices. Furthermore, participants remained uncertain 637 

about their choice outcomes, and therefore could only base their history biases on internal signals. 638 

This was likely the key aspect that mediated the confidence-weighting of the impact of previous 639 

choices on current bias in our present study. Thus, the adjustment effects in our study and the one 640 

from Abrahamyan and colleagues (2016) likely resulted from distinct computational mechanisms. 641 

 The interpretation provided above as well as the normative framework by Glaze et al (2015) offer 642 

a natural interpretation of the modulatory effect of decision confidence on the adjustment of choice 643 

behavior. In statistical decision theory, as well as in neural signals observed in the brain, the decision 644 

variable does not only encode the categorical choice, but also the graded confidence about that 645 

choice (Kepecs et al., 2008; Kiani and Shadlen, 2009; Hebart et al., 2016). This quantity is the best 646 
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proxy for the true state of the environment available to the decision-maker in the absence of external 647 

feedback. A decision variable large in magnitude implies large confidence and predicts accurate as 648 

well as fast decisions (Sanders et al., 2016). Thus, across-trial accumulation of decision variables into 649 

choice history bias predicts that correct or fast choices have a stronger impact on the history bias 650 

adjustment to environmental statistics – just as we observed in our second experiment. The same idea 651 

can account for the observation (Urai et al., 2017) that ‘intrinsic’ history biases emerging under 652 

random stimulus sequences, regardless of their direction (i.e., towards alternation or repetition), are 653 

weaker following low-confidence decisions (i.e., long reaction times). In such contexts, corresponding 654 

to the Neutral condition in our Experiment 2, observers’ biases might result from biased internal 655 

representations of the environmental structure (i.e., biased ‘subjective hazard rates’ in the model by 656 

Glaze et al, 2015)). Taken together, confidence-weighting of the impact of previous choices on current 657 

bias may be a diagnostic feature of the accumulation of graded decision variables across trials that we 658 

propose as a mechanism underlying the history bias adjustment in our experiment. 659 

 In our account the strength of history bias adjustment depends on the magnitude of the decision 660 

variable, which is also the sole source of variations in confidence in the confidence model from Figure 661 

6A (Kepecs et al, 2008). According to this model the difference in confidence between correct and 662 

error trials increases as a function of stimulus strength. Thus, one would expect the impact of 663 

correctness on bias adjustment to also increase as a function of stimulus strength. Such an increase 664 

was not evident in our data (Figure 6B). A possible explanation is that choice accuracy was less 665 

closely coupled to the decision variable than postulated by the confidence model from Figure 6A. For 666 

example, some errors will be caused by noise downstream from the decision variable and 667 

consequently not affect the bias adjustment. Thus, motor errors will counteract the dependence of 668 

history bias adjustment on correctness. Because misperception of the true stimulus category becomes 669 

less likely with stronger evidence, the relative contribution of motor errors to incorrect choices will 670 

increases as a function of evidence strength. This might explain why the effect of previous correctness 671 

on history bias adjustment did not increase as a function of previous evidence strength in our data. 672 

Similar considerations hold for our second confidence proxy, reaction time. 673 

 Our analyses revealed that the contributions of previous stimuli, perceptual choices, and motor 674 

responses were dissociable in terms of their strength, sign, and time course. Importantly, the dominant 675 

and consistent bias in standard conditions with random stimulus sequences, was to repeat preceding 676 

choices, rather than motor responses. Two recent studies similarly decoupled perceptual choice and 677 
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motor response (Akaishi et al., 2014; Pape and Siegel, 2016). One of them (Pape and Siegel, 2016) 678 

showed that a bias to alternate response hands from trial to trial systematically contributed to 679 

sequential effects, due to activity dynamics within motor cortex. This motor response alternation bias 680 

was superimposed onto a choice repetition bias in their study, but Pape and Siegel (2016) did not 681 

compare the magnitude and time course of these two effects directly. When performing such a direct 682 

comparison, we here found the contribution of previous choices to be significantly stronger, and more 683 

prolonged in time. The predominance of choices over motor responses is consistent with the results 684 

(focusing on the preceding decision only) from Akaishi et al (2014). Taken together, the data by 685 

Akaishi et al (2014) and our present study indicate that history biases in perceptual decision-making 686 

are governed by decision variables encoded in an abstract, action-independent format. Such 687 

representations of the decision variable exist in associative brain regions, such as posterior parietal or 688 

prefrontal cortex (Bennur and Gold, 2011; Hebart et al., 2012, 2016), which also exhibit the short-term 689 

memory dynamics necessary for the persistence of biases in the decision-making machinery (Wang, 690 

2002; Bonaiuto et al., 2016; Morcos and Harvey, 2016).  691 

 We conclude that human observers accumulate action-independent, graded decision variables 692 

across trials towards biases for upcoming choices in a context-dependent manner. This process 693 

enables observers to adjust their choice behavior to environmental statistics in the absence of 694 

unambiguous information about choice outcome. Our findings are in line with normative theory and 695 

constrain the candidate neural sources of choice history biases. 696 

 697 
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 800 

Legends 801 

Figure 1. Quantifying choice history bias and behavioral task. 802 

(A), (B) Behavioral tasks.  Observers judged the net direction (up vs. down) of a dynamic random dot 803 

pattern of variable direction and coherence. (A) Experiment 1, decoupling choice and motor response. 804 

After a blank fixation interval, a choice-response mapping cue was shown before (Pre) or after the 805 

presentation (Post) of the motion stimulus, which also varied in duration. Observers responded after 806 

dot motion offset in the Pre-condition and after mapping cue offset in the Post-condition. Auditory 807 

feedback was provided after incorrect responses. (B) Experiment 2, manipulating stimulus repetition 808 

probabilities. Left: Random dot motion and fixation cross were shown throughout the trial. A beep 809 

indicated the onset of the evidence interval, which contained some level of coherent motion (0% on 810 

some trials). A second beep indicated the evidence offset and start of the response interval (deadline: 811 

3 s). Right: Three repetition probabilities between motion directions across trials yielded three 812 

environmental conditions: Neutral (repetition probability of 0.5), Repetitive (repetition probability of 0.8) 813 

and Alternating (repetition probability of 0.2). (C) Signed motion coherence levels (cyan) and 814 

categorical choices (purple) from a sequence of 15 trials recorded in Neutral in Experiment 2. Positive 815 

values of stimulus intensity correspond to upward motion and negative ones to downward motion. (D) 816 

Psychometric functions conditioned on previous choice in Neutral exhibit history biases in three 817 

example participants. See main text for details. 818 

 819 

 820 

 821 

Figure 2. Stronger impact of previous choice than of previous motor response on current bias. 822 

(A) Impact of previous choices and motor responses as a function of lag. (B) As (A), but for impact of 823 

previous stimulus categories. Shaded areas, s.e.m.; dots, p < 0.05 (FDR-corrected t-test) across 824 

participants. 825 
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 826 

Figure 3. Adjustment of choice history biases to environmental statistics. 827 

(A) Stimulus repetition probabilities for Repetitive, Alternating and Neutral. In Repetitive, repetition of 828 

the motion direction from two trials back could occur due to a sequence of two repetitions or two 829 

alternations (probability: 0.8 x 0.8 + 0.2 x 0.2 = 0.68). In Alternating, the probability of repetition of the 830 

same direction oscillated around 0.5 as a function of lags, with decreasing deviation from 0.5. (B) 831 

Impact of previous stimuli and choices on current choice for lag 1. Dots, single observers, arrows 832 

changes of group mean weights from Neutral (red cross) during Repetitive and Alternating, 833 

respectively. (C) Psychometric functions conditioned on previous choice (group average). Left: 834 

Repetitive, leftward shift from dashed to dotted line corresponding to a bias to repeat the previous 835 

choice. Right: Alternating, leftward shift from dotted to dashed line, indicating a bias to alternate the 836 

previous choice. (D) Correct weights as functions of lags in Repetitive and Alternating. (E) Adaptitivity 837 

indices (correlation coefficient with the history template) computed from correct kernels from the 838 

Repetitive and Alternating conditions. Dotted line, correlation between history templates for Repetitive 839 

and Alternating.  Shaded areas, s.e.m.; dots, p < 0.05 (FDR-corrected t-test) across participants; *, p < 840 

0.05; **** p < 0.0001. 841 

 842 

Figure 4. No differences in history weights for synthetic observers without bias adjustment. 843 

Results of two simulations of synthetic observers without bias adjustment analyzed as real observer 844 

data for Figure 3B, D. (A) Synthetic observers with all parameters taken from the real observers’ 845 

estimates for Repetitive and Alternating, but history weights set to 0. (B) Synthetic observers with all 846 

parameters taken from the real observers’ estimates for Neutral. Note the difference in the y-axis scale 847 

between these simulated observers and the real observer data in Figure 3. Shaded areas, s.e.m. 848 

across synthetic observers. 849 

 850 

 851 

Figure 5. Behavioral performance depends on bias adjustment and perceptual sensitivity. 852 

(A) Correlation between adaptivity index and proportion of correct choices. Left: Repetitive. Middle: 853 

Alternating. Right: Neutral. Insets: Correlations for the simulated observers without bias adjustment 854 

(compare Figure 4A). (B) Correlation between sensitivity (i.e. slope of the psychometric function) and 855 

the proportion of correct choices. Left: Repetitive. Middle: Alternating. Right: Neutral.  856 
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 857 

Figure 6. Modulation of bias adjustment by proxies of confidence in previous choice. 858 

(A) Scaling of model-based confidence and uncertainty with evidence strength on correct and error 859 

trials. Adapted from (Urai et al., 2017) under a CC-BY 4.0 license. (B) Difference between previous 860 

choice weights from Repetitive and Alternating, sorted by previous choice correctness and coherence. 861 

(C) Comparison between previous correct and incorrect weights, for Repetitive and Alternating. 862 

Weights were first calculated separately for each previous coherence level and then pooled across 863 

coherence. (D) Reaction time as function of motion coherence sorted by correctness (pooled across 864 

Repetitive and Alternating). (E) Difference between previous  modulation weights 865 

from Repetitive and Alternating, sorted by previous coherence. See main text for details of the 866 

multiplicative modulation model. (F) weights for Repetitive and Alternating. 867 

Modulation weights were first calculated separately for each previous coherence level and then pooled 868 

across coherence. Shaded areas, s.e.m.; dots, p < 0.05 (FDR-corrected t-test) across participants; *, p 869 

< 0.05; **, p < 0.01; ***, p < 0.001, ****, p < 0.0001. 870 
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