
Cognitive processing is highly selective, integrative and 
flexible. This is achieved through the transient forma-
tion of large ‘coalitions of neurons’1, which are widely 
distributed across many brain areas, exchange signals in 
a specific manner and compete with each other. Just as 
in politics, one coalition typically rules until it is over-
turned by another. In the brain, the winning coalition 
governs a percept, thought or action. Thus, understand-
ing the neuronal basis of cognition requires an under-
standing of how transient coalitions of neurons form, 
compete and dissolve.

Around 30 years ago, it was suggested that the syn-
chronization of oscillatory neuronal activity might have 
a key role in the integration of sensory signals during 
perceptual organization2,3. Several investigations into the 
visual system provided evidence for4–9 and against10–12 
this hypothesis. One decade ago, three influential 
Reviews in this journal further highlighted the func-
tional significance of neuronal oscillations for the large-
scale neuronal interactions underlying cognition13–15. 
Since then, several groups have begun to unravel these 
interactions and their dynamics, aided by the develop-
ment of powerful new measurement and analysis tools.

Here, we discuss recent studies characterizing the 
interactions between distant regions of the primate 
cerebral cortex through the study of correlated oscilla-
tions. We use sensorimotor decision-making and top-
down visual attention as showcases. Although most 
other cognitive processes (for example, multisensory 
integration16–19) also involve large-scale interactions, 
we focus on decision-making and attention for two 
reasons. First, both processes critically depend on the 

interaction between neuronal populations located in 
widely separated cortical areas. Second, both have been 
the focus of several recent studies linking interactions 
between brain areas to cognition. These studies showed 
that large-scale cortical interactions typically involve 
frequency-specific, correlated neuronal oscillations. The 
detailed analyses of such frequency-specific interactions 
indicate tight mechanistic links between processes that 
may seem different at the behavioural level of analysis. 
They have also been able to dissociate between seem-
ingly analogous processes. These insights could hardly 
have emerged from analysing only local neuronal activ-
ity patterns. Thus, the evidence discussed in this Review 
suggests that frequency-specific correlated oscillations 
in distributed cortical networks may provide indices, or 
‘fingerprints’, of the network interactions that underlie 
cognitive processes. We propose that these fingerprints 
may index canonical neuronal computations underly-
ing cognition, which are commonly inferred, but not 
directly accessed.

A window onto cortical interactions
We focus on electrophysiological studies that have 
characterized frequency-specific neuronal dynamics 
by means of spectral analysis of non-invasive electroen-
cephalography (EEG), magnetoencephalography (MEG) 
or invasive multi-microelectrode recordings. Frequency-
specific cortical population signals — which are often 
narrow band and as such reflect neuronal oscillations — 
are markers of the underlying neuronal network interac-
tions2,13,14,20–25. Thus, measures of the association between 
brain areas based on such frequency-specific signals  
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Spectral analysis
A general term for analysis 
techniques (for example, Fourier 
transform or wavelet transform) 
that decompose time domain 
signals into their different 
frequency components.

Multi-microelectrode 
recordings
Simultaneous recordings of 
single- or multi-unit activity 
from multiple electrodes 
implanted in the brain.
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Abstract | Cognition results from interactions among functionally specialized but widely 
distributed brain regions; however, neuroscience has so far largely focused on characterizing 
the function of individual brain regions and neurons therein. Here we discuss recent studies 
that have instead investigated the interactions between brain regions during cognitive 
processes by assessing correlations between neuronal oscillations in different regions of the 
primate cerebral cortex. These studies have opened a new window onto the large-scale 
circuit mechanisms underlying sensorimotor decision-making and top-down attention. We 
propose that frequency-specific neuronal correlations in large-scale cortical networks may 
be ‘fingerprints’ of canonical neuronal computations underlying cognitive processes.
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Blood oxygen 
level-dependent functional 
MRI
(BOLD fMRI). Brain imaging 
technique that measures the 
haemodynamic response to 
neural activity based on 
changes in blood oxygenation.

Sensor level
The level of the sensors, which 
record neuronal mass activity 
(for example, electroencepha-
lography electrodes or magne-
toencephalography sensors). 
Each sensor-level signal 
constitutes a linear mixture of 
the signals generated by many 
neuronal sources.

Source reconstruction
Estimation of the sources of 
neuronal activity that underlie 
the electromagnetic signals 
measured at distant electroen-
cephalography or magnetoen-
cephalography sensors.

Effective connectivity
The influence one neuronal 
system exerts on another; in 
many studies it is measured by 
quantifying Granger causality.

(FIG. 1) are likely to provide more detailed information than 
corresponding measures based on broadband electro-
physiological signals or the blood oxygen level-dependent  
functional MRI (BOLD fMRI) signal.

The coupling between neuronal oscillations in differ-
ent brain regions has been commonly assessed in terms 
of either the correlation of their relative phase (‘phase 
coherence’) or, on a slower timescale, the correlation of 
their amplitude envelopes (here referred to as ‘amplitude 
correlation’) (FIG. 1). Inter-areal interactions can also be 
assessed by determining correlations between BOLD 
fMRI signals measured in different brain regions26. The 
link between measures of cortical interactions based 
on frequency-specific electrophysiological signals and 
measures of cortical interactions based on the BOLD 
fMRI signal is discussed in BOX 1. It is important to be 
aware that the relationships between interaction meas-
ures based on electrophysiology and fMRI are far from 
simple, and that these measures may reflect different 
neuronal circuit mechanisms. Furthermore, attempts to 
study cortical large-scale interactions face several serious 
methodological challenges (BOX 2). For EEG and MEG, 
field spread (BOX 2) severely limits the use of correlational 
measures at the sensor level. Thus, we focus on EEG and 
MEG studies that used source reconstruction techniques 
to assess either amplitude correlation or phase coher-
ence between neuronal oscillations in different cortical 
regions. In the following paragraphs, we briefly discuss 
the neurophysiological basis and significance of both 
measures.

Neuronal phase coherence (FIG. 1a) is not just a sta-
tistical quantity: it may also have a direct functional role 
in regulating neuronal communication between brain 
regions14,15,27. This may be achieved in two ways. First, 
synchronization of presynaptic spikes within a sending 
neuronal population in one or several cortical areas may 
enhance this population’s impact on postsynaptic neurons 
located in a receiving area if neurons in the receiving area 
act as ‘coincidence detectors’15,28,29. Evidence suggests that 
this is the case: synchronous presynaptic spikes are more 
effective in driving postsynaptic cortical neurons than 
non-synchronized inputs30–32, in particular in the bal-
anced excitation and inhibition regime that is common 
in cortical networks15,33. Enhanced functional connectivity 
through presynaptic synchronization can be potentially 
assessed by determining either the amplitude correlation 
(see below) or the phase coherence between sending and 
receiving cortical regions. Second, the phase alignment 
of oscillatory signals between sending and receiving neu-
ronal populations located in two cortical areas may itself 
regulate the effective connectivity between these regions27,34. 
Sub-threshold membrane potential oscillations induce 
rhythmic changes in neuronal excitability20,35,36, and 
presynaptic spikes that are aligned to the excitable phase 
of such postsynaptic oscillations are more likely to drive 
spiking activity at the postsynaptic stage27,34.

Amplitude correlation is a measure of the co- 
modulation of the amplitude envelopes (that is, of the 
power) of oscillations in two areas37(FIG. 1b). In the pri-
mate cerebral cortex, amplitude correlations predomi-
nantly occur at low frequencies (<0.1 Hz)38 and seem to 
be closely linked to slow co-modulations of spontane-
ous fMRI signal fluctuations in distant cortical regions39 
(BOX 1). During cognitive tasks, amplitude correlation is 
also evident at faster timescales — on a trial-by-trial or 
within-trial basis — and between different oscillation fre-
quencies. The mechanistic interpretation, and thus the 
functional significance, of amplitude correlation is less 
clear than the mechanistic interpretation of phase coher-
ence. One possibility is that amplitude correlations reflect 
state changes coupled across brain networks that might 
be driven by neuromodulatory systems and that may be 
important for coordinating cortical processing on slow 
timescales38,40. Several studies using amplitude correla-
tion have provided important insights into large-scale 
interactions even between cortical areas that are only 
indirectly connected through polysynaptic pathways41–44. 
Thus, amplitude correlation is an informative index of the 
large-scale cortical interactions that mediate cognition.

In principle, phase coherence and amplitude correlation 
are independent of one another37. For example, the ampli-
tude envelopes of the oscillatory responses of two regions 
can co-vary strongly even if their phases are randomly  
distributed (FIG. 1b). The reverse can be true as well.

New evidence on large-scale interactions
During goal-directed, sensory-guided behaviour, 
sensory signals are continuously transformed into 
action plans in a highly flexible fashion. The underly-
ing sensorimotor transformations rely on both feed-
forward45–50 and feedback42,50–62 interactions between 

Figure 1 | Phase coherence and amplitude correlation of oscillations. a | Phase 
coherence quantifies the consistency of the relative phase between two simultaneous 
signals that have the same frequency. The left panel shows an example of two  
oscillatory signals that are phase coherent with zero phase lag. Signals can also be phase 
coherent with non-zero phase lag (right panel), that is, they can be phase-shifted relative 
to each other. b | Amplitude correlation is a measure of the correlation of the envelopes 
(shown in red) of two simultaneous oscillatory signals (amplitude correlation is also often 
referred to as ‘power-to-power correlation’ or ‘amplitude–amplitude coupling’). 
Amplitude correlation can be measured between oscillatory signals of the same or 
different underlying carrier frequencies. Furthermore, amplitudes can be positively 
correlated or negatively correlated (that is, anti-correlated). The panels show examples 
of a positive amplitude correlation between two oscillatory signals of the same (left) and 
different (right) underlying carrier frequencies. Importantly, phase coherence and 
amplitude correlation are independent of one another. This is exemplified in the left 
panel of part b, in which the amplitudes of the two oscillations are correlated but the 
underlying oscillations are not phase coherent. f, frequency.
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1/f spectrum
A spectrum for which the 
power P is inversely 
proportional to frequency f: 
P(f) ∝ 1/f a, a>0.

Posterior parietal cortex
(PPC). An associative brain 
region that is centrally involved 
in spatial processing and 
controlling selective attention.

Area MT
A region in the extrastriate 
visual cortex of the primate 
brain that is centrally involved 
in neuronal processing and 
perception of visual motion.

brain areas45–50,63,64. Information about the environment 
encoded in sensory cortices is routed to motor structures 
in a feedforward fashion45–50. However, these sensori-
motor transformations are strongly shaped by feedback 
from association and premotor cortices to early sensory 
cortices. The mapping of sensory information onto 
actions is flexibly adapted by these feedback interactions 
to both the decision-maker’s internal state and the situ-
ational context42,50–62. For example, ‘top-down’ feedback 
signals selectively bias the information flow such that 
only the goal-relevant evidence is mapped onto motor 
actions65,66. Such feedback to sensory cortices may even  
occur spontaneously, when the task does not require it54–56.  
Further, real-life sensory-guided behaviour involves 
active sampling of the sensory environment67, and here, 
momentary sensory inputs are strongly shaped by motor 
actions (for example, saccades, whisking or sniffing)68 as 
well as motor plans69,70.

Traditionally, studies of the neuronal basis of sensory- 
guided behaviour have been segregated according to 
the primary direction of information flow. Studies of 
sensorimotor decision-making have primarily focused 
on the ‘bottom-up’ transformation of sensory infor-
mation into action plans, whereas studies of top-down 
attention primarily focus on the top-down selection of 
sensory information. In the following section, we first 
follow this distinction when reviewing recent studies 
of large-scale neuronal interactions. We then discuss 
the mechanistic connections between the neuronal  
interactions identified in these two lines of research.

Sensorimotor decision-making. A number of influ-
ential single-unit studies in monkeys have focused on 
charact erizing the feedforward transformations of sen-
sory signals into motor plans during sensorimotor deci-
sions45,46,48,49. These studies suggest that the temporal 
integration of sensory information that lies at the heart 
of this decision process is distributed across several 
recurrently interconnected cortical association areas, 
most importantly the posterior parietal cortex (PPC) 
and dorsolateral prefrontal cortex (DLPFC)45–49. Recent 
studies in humans and monkeys have adopted analogous 
experimental strategies to investigate the large-scale  
cortical interactions during sensorimotor decisions.

One example is a series of studies that combined 
MEG with source reconstruction in humans42,50,71–73. In 

one of the studies42, subjects had to decide whether there 
was a coherent visual motion signal embedded in visual 
‘noise’ presented on a screen and report their decisions 
by pressing a button with one of their hands. Owing to 
the difficulty of this task, subjects had to integrate the 
weak ‘evidence’ for motion over time51,74,75. Amplitude 
correlation of local oscillations during decision forma-
tion provided insight into the large-scale interactions 
between sensory and motor stages. Preceding the button 
press, lateralized gamma-band (~60–100 Hz) and beta-
band (~12–35 Hz) activity associated with the upcoming 
choice gradually built up in the subjects’ left and right 
motor cortices42. The build-up of this choice-predictive 
activity reflected the temporal integral of the stimulus 
response in the area MT42, and gamma-band activity in 
this area encoded the strength of visual motion71 (FIG. 2a). 
This direct evidence for the temporal integration of sen-
sory evidence into motor plans could only have been 
obtained by directly analysing the interactions between 
two ‘stages’ (that is, sensory and motor stages) of the 
decision process51,74,75.

Several studies have suggested a role for large-scale 
coupling in the beta-band in sensorimotor integra-
tion76–78. A different analysis of the MEG data on visual 
motion detection (discussed above) implicated large-
scale oscillations in a lower beta-band (12–25 Hz) in 
connecting the sensory and motor processing stages of 
the decision process72. While subjects were forming the  
decision, beta-band oscillations were enhanced in  
the PPC and DLPFC before correct choices relative to 
incorrect choices (FIG. 2b). Moreover, interactions between 
the PPC and DLPFC — as assessed by their amplitude 
correlation in the beta-band — predicted the correctness 
of the upcoming choice. One possible interpretation of 
this result is that the large-scale, frontoparietal beta-band 
oscillations that occur during decision formation reflect 
reverberant network interactions that actively maintain 
past sensory evidence50,72,79. Notably, these large-scale 
beta-band oscillations are distinct from the choice- 
predictive suppression of local beta-band oscillations 
in the motor cortex42, which seems to reflect a focal  
suppression of intrinsic rhythms by cortical activation80. 

Multi-area recordings from the monkey cortex pro-
vide further support for the idea that large-scale beta-
band oscillations are involved in sensorimotor decisions. 
A recent study81 showed decision-related beta-band 

Box 1 | Measuring interactions between brain regions: electrophysiology versus functional MRI

The correspondence between the phase coherence of electrophysiological signals at a fine temporal scale and the 
temporal correlations of sluggish functional MRI (fMRI) signals is unclear. Because of its low temporal resolution, the  
fMRI signal is not likely to allow for directly measuring the phase coherence between cortical responses, at least in 
intermediate and high frequency (that is, beta and gamma) ranges. However, evidence has linked the correlations 
between fMRI signals at distant points in the brain to amplitude correlations of band-limited cortical activity38,199,200. 
Co-variations between the amplitude envelopes of electrophysiological mass signals are typically as slow as the resting 
state fluctuations of the fMRI signal, in that they have a 1/f spectrum with dominant frequencies around 0.1 Hz and 
below201. It has been speculated that these slow, coherent fluctuations may reflect common input from neuromodulatory 
brainstem centres38. More recent evidence shows that correlations between remote fMRI signals can also occur at faster 
timescales that reflect specific perceptual and cognitive processes26,202–204. Again, these correlations probably reflect a 
correlation between amplitudes of band-limited activity; however, measurements to test this hypothesis have not yet 
been performed.
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Local field potentials
(LFPs). The low-frequency 
components of the 
extracellular voltage. The LFP 
mainly reflects average 
postsynaptic potentials 
surrounding the electrode tip.

activity during a well-characterized somatosensory 
discrimination task48,82. In each trial of this task, mon-
keys received two vibrotactile stimuli, separated by a 
brief delay, to the right hand and had to indicate with 
a left-hand button press whether the second stimulus 
was of higher or lower frequency than the first stimulus. 
During stimulus presentation, beta-band oscillations 

(~15–30 Hz) in the local field potentials (LFPs) of several 
frontal cortical areas varied with the stimulus frequency. 
Furthermore, during the decision-making period (that 
is, after stimulus presentation), beta-band oscilla-
tions in medial prefrontal and primary motor cortices 
reflected the monkeys’ upcoming perceptual choice. 
These large-scale beta-band modulations were absent 
in a control condition in which the monkeys received 
the same vibrotactile stimuli and had to make a motor 
response but no perceptual decision about the stimuli. 
The decision-related beta-activity reflected the upcom-
ing choice, irrespective of its correctness. In that respect, 
this otherwise similar spectral fingerprint differed from 
the large-scale performance-related beta-band activ-
ity observed during visual motion detection discussed 
above72. Experiments using similar tasks in human MEG 
and monkey LFP studies are needed to determine the 
causes of this apparent dissociation.

Frontal–parietal beta-band oscillations also seem 
to be instrumental for decisions that are not directly 
instructed by external stimuli83 (FIG. 2c). When monkeys 
were free to choose a sequence of reach movements to 
visual targets displayed on a screen, coherence between 
spikes and LFPs in the premotor cortex and in a specific 
region of the PPC (the ‘parietal reach region’) increased 
transiently around 15 Hz. This coherence increase was 
stronger during the ‘free search’ condition than during  
a control condition in which the monkeys had to follow a  
visually instructed movement sequence. The authors 
suggested that the free decision process more strongly 
recruited a large-scale frontoparietal decision circuit83. 
Interactions in this decision circuit may specifically 
involve the beta-band.

Top-down attention. Several recent studies have begun 
to characterize the cortical long-range interactions that 
underlie top-down attention in the primate brain. One 
MEG study73 demonstrated that attention selectively 
modulates large-scale cortical phase coherence in the 
human brain (FIG. 3a). Subjects were simultaneously pre-
sented with two weak motion stimuli in the left and right 
visual hemifield. At the beginning of each trial, a cue 
instructed subjects to attend to one of the two stimuli 
and to assess its motion direction. The authors com-
bined MEG with source reconstruction to characterize 
the phase coherence between visual cortical area MT and 
two attentional control regions, the PPC and the frontal 
eye field (FEF)73. Attention selectively enhanced gamma-
band phase coherence between these regions in the hem-
isphere that processed the attended stimulus (FIG. 3a). 
This enhancement was complemented by a reduction 
of coherence in lower (that is, alpha and beta) frequency 
ranges. Attention also modulated local oscillatory activ-
ity (that is, signal power) in these brain regions, with 
different frequency bands being involved before and 
during stimulus presentation73. By contrast, long-range 
coherence was similarly modulated before and during 
stimulus presentation and thus seemed to be largely 
stimulus-independent. These findings suggest that atten-
tion establishes gamma-band coherence between spe-
cific neuronal populations in frontal, parietal and visual 

Box 2 | Challenges in characterizing large-scale neuronal interactions

Signal-to-noise ratio 
The signal-to-noise ratio (SNR) poses a serious but often ignored potential confounding 
factor for all assessments of neuronal interactions based on measures of neuronal mass 
activity. Measures such as the local field potential (LFP), electroencephalography (EEG), 
magnetoencephalography (MEG) or blood oxygen level-dependent (BOLD) functional 
MRI (fMRI) not only reflect activity of the neuronal population of interest (‘signal’) but 
also activity that is not of interest (‘noise’). Consequently, changes in measured 
correlations can be driven by changes in the SNR. For example, even if the true correlation 
between two populations of interest does not change, a mere increase in the amplitude 
of their activity leads to an increase in the SNR and thus to an increase in the measured 
correlation (for a detailed discussion, see REF. 87). One strategy to control for this 
confounding factor is to focus on characterizing changes in correlation only if they are 
not paralleled by changes in the amplitude of the local neuronal signals87,95,204.

Multiple-comparison problems
Large numbers of comparisons across the brain are common in brain-imaging 
techniques. But the more comparisons that are performed, the higher the probability 
that false-positives will be detected. This multiple-comparison problem is often 
severely aggravated when studying neuronal interactions because the number of 
interactions grows quadratically with the number of potentially interacting regions. 
Like SNR confounding factors, this problem is not limited to the characterization of 
neuronal oscillations but also applies to other approaches (for example, fMRI). Typical 
strategies to circumvent this problem are to focus on a few regions of interest and to 
apply rigorous statistical techniques that efficiently account for multiple comparisons87.

Field spread
Field spread refers to the fact that electrical potentials and magnetic fields generated 
by neuronal activity are not only measured in the direct vicinity of neuronal sources but 
can also be measured at distant sites, depending on the conductive properties of the 
interposed media. This substantially limits the interpretation of sensor-level EEG and 
MEG data with respect to underlying neuronal sources. For example, responses in the 
primary auditory cortex (that is, the temporal lobe) are most strongly measured at 
central and peripheral EEG electrodes, but not actually at electrodes over the temporal 
cortex205. Thus, coherent activity at distant EEG or MEG sensors should be interpreted 
with caution, as it may merely reflect activity from a single neuronal source rather than 
coherence of activity at distinct sources206. Applying spatial filtering techniques to EEG 
or MEG data, such as surface Laplacian or source reconstruction techniques, can help 
to minimize the problem of volume conduction. Because volume conduction is always 
instantaneous, an effective strategy for addressing this confounding factor is to confine 
the analysis to non-instantaneous correlations, as in analyses of directed interactions or 
of the phase-lagged part of coherence207.

Saccadic spike potentials
Saccadic spike potentials are electromagnetic signals that are produced by extraocular 
muscle contractions at the onset of saccadic or microsaccadic eye movements208. The 
waveform of these spike potentials contains the most signal power in a broad 
gamma-band (~20–90 Hz) and, because of field spread (see above), spike potentials are 
strongly picked up at frontal, parietal and occipital EEG electrodes209–211. The rate of 
microsaccades is modulated by stimulus presentation and cognitive factors212,213. With 
their topography, spectral characteristic and temporal modulation, spike potentials 
closely resemble neuronal gamma-band activity. Indeed, several EEG findings that had 
previously been interpreted as neuronal gamma-band activity are likely to reflect 
saccadic spike-potentials209,210. Thus, it is crucial to carefully control for saccadic 
spike-potential artefacts in any EEG or MEG214 experiments that investigate oscillatory 
activity in the gamma-band. Rejection of contaminated data segments, source 
analysis87 and independent component analysis (ICA)-based spike-potential removal210 
provide useful approaches.
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Frontal eye field
(FEF). A region in the frontal 
cortex that controls saccadic 
eye movements and the focus 
of visuospatial attention in the 
primate brain.

cortices and that this coherence mediates the selection 
of task-relevant visual information.

Enhanced coherence of the FEF with the visual cor-
tex may reflect attentional selection of sensory signals 
by feedback from the FEF to the visual cortex, as well 

as the feedforward influence of the selected neuronal 
population in the visual cortex to the corresponding 
FEF population, thus supporting the covert reorienting 
of attention and/or the preparation of an eye movement 
to the attended stimulus70,84. Evidence for both of these 
aspects was provided in a study85 of the interactions 
between the FEF and visual area V4 during a visuos-
patial attention task in monkeys (FIG. 3b). In accordance 
with the MEG results discussed above73, top-down atten-
tion enhanced gamma-band coherence between the FEF 
and V4. Gamma-band oscillations in both areas were 
phase-shifted by ~10 ms. Given synaptic and conduction 
delays, this time shift may be optimal for spikes in one 
region to affect neurons at peak depolarization in the  
other region. Moreover, an analysis of the direction 
of inter-regional gamma-band interactions based on 
Granger causality suggested that immediately after a cue 
to shift attention, feedback from the FEF to V4 domi-
nated. Later, during processing of the attended stimu-
lus, feedforward influences from V4 to the FEF became 
dominant (FIG. 3b). Thus, after an initial top-down bias 
of sensory processing stages, long-range gamma-band 
coherence seems to primarily mediate the enhanced 
bottom-up routing of attended sensory signals.

The above two studies73,85 provide converging evi-
dence that the gamma frequency range is instrumental 
in mediating the cortical long-range interactions under-
lying top-down attention. However, other findings also 
suggest an important role for lower frequencies, in par-
ticular the beta- and theta-bands. One human MEG 
study86 investigated the neuronal basis of the attentional 
blink (FIG. 3c). When subjects successfully detected target 
letters in a rapid visual stream of letters, coherent beta-
band oscillations (13–18 Hz) were enhanced between 
MEG sensors overlying the temporal cortex, DLPFC 
and PPC. Thus, fluctuations in the strength of large-scale 
beta-band coherence may reflect fluctuations in visual 
attention that, in turn, cause fluctuations in behavioural 
performance.

An EEG study87 of cortical coherence during percep-
tion of an ambiguous audiovisual stimulus also suggests 
that top-down attention can be mediated by coherent 
beta-band oscillations across frontoparietal networks. In 
each trial, participants watched a screen on which two 
bars approached, briefly overlapped and moved apart 
again. At the time of overlap of the bars, a brief click 
sound was played. Participants perceived this stimulus 
either as two passing or bouncing bars, with the percept 
spontaneously changing from trial to trial. Around the 
time when the stimulus became perceptually ambiguous, 
beta-band coherence (15–23 Hz) was enhanced across a 
large-scale cortical network including bilateral FEF, PPC 
and visual area MT (FIG. 3d). Furthermore, the strength of 
beta-band coherence in this network predicted the sub-
jects’ percept: stronger beta-band coherence predicted 
the subjects perceiving the bars as bouncing, whereas 
weaker coherence predicted the percept of passing bars. 
As the FEF and PPC are centrally involved in control-
ling top-down attention57,59–61, fluctuations of large-
scale beta-band coherence may reflect fluctuations of  
attention that determine the bi-stable percept.

Figure 2 | Cortical network dynamics underlying sensorimotor decisions.  
a | Long-range interactions between sensory and motor processing stages during 
perceptual decision-making in humans. Neuronal activity in the motor cortex (M1) and 
area MT (left panel) was reconstructed from the magnetoencephalogram of subjects 
performing a visual motion-detection task. Gamma-band activity in area MT reflects the 
strength of visual motion71, and the hemispheric lateralization of gamma- and beta-band 
activity in M1 reflects the upcoming manual motor response. The temporal integral of MT 
gamma-band activity across the stimulus-viewing interval predicted M1 lateralization in 
the beta-band and gamma-band at the end of stimulus viewing. This suggests that the 
temporal integration of sensory evidence encoded in area MT underlies the interaction 
of MT and M1. b | Frontoparietal beta-band (12–24 Hz) activity reflects perceptual 
decision-making processes. During stimulus viewing in the same motion-detection task 
as in a, beta-band activity reconstructed from the magnetoencephalogram in 
dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) (left panel) 
was stronger for correct than for erroneous detection decisions (middle panel). Also, 
stronger interactions between DLPFC and PPC, as quantified by the amplitude 
correlation of beta-band activity between these stages, predicted correct decisions 
(right panel). c | Frontoparietal beta-band coherence around 15 Hz reflects 
decision-making during motor planning. Local field potentials (LFPs) and spiking activity 
were simultaneously recorded in dorsal premotor cortex (PMd) and the parietal reach 
region (PRR) in macaque monkeys (left panel) performing an instructed or free motor 
choice task. Immediately following the display of a search array, beta-band coherence 
between spikes in PMd and LFPs in PRR was enhanced during free choices (left graph) 
compared with instructed (right graph) choices. The graphs in a are reproduced, with 
permission, from REF. 42 © (2009) Elsevier. The middle panel of b is reproduced,  
with permission, from REF. 72 © (2007) American Physiological Society. The graphs in c 
are reproduced, with permission, from REF. 83 © (2008) Macmillan Publishers Ltd. All 
rights reserved. sd, standard deviation. 
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Granger causality
A statistical measure that 
quantifies directed and 
potentially causal interactions 
between two simultaneous 
signals based on their mutual 
predictability.

Attentional blink
The phenomenon that a 
second target is often missed 
when presented 
~200–500 ms after a first 
target in a rapid stream of 
visual stimuli.

Two invasive studies in monkeys provide further sup-
port for the importance of long-range beta-coherence 
in top-down visual attention. The first study88 simulta-
neously recorded neuronal activity from area MT and 
the lateral intraparietal area (area LIP) (a region of the 
PPC) during a visual delayed match-to-sample task in 
monkeys. High beta-band coherence (20–35 Hz) was 
selectively enhanced between those neuronal popu-
lations in MT and LIP that encoded the remembered 
visual location. The discrepancy between the enhance-
ment of coherence in the beta-band in this study and 
the gamma-band enhancements reported in REFS 73,85 
may be related to the different behavioural tasks (delayed 
match-to-sample versus instructed spatial attention 
tasks). Indeed, another study89 found that the frequency 
of long-range interactions changes with different direc-
tions of visuomotor processing. Here, the authors 

compared the coherence between the DLPFC and the 
LIP in a task that required top-down attention to find 
a visual target (‘top-down task’) and in a task in which 
attention was attracted to a salient target in a bottom-
up fashion (‘bottom-up task’). The top-down task was 
associated with enhanced coherence between the LIP 
and DLPFC in the beta-band (22–34 Hz), whereas the 
bottom-up task was associated with enhanced coherence 
in the gamma-band (35–55 Hz). Thus, this study sug-
gests that bottom-up and top-down visuomotor process-
ing may rely on interactions between the DLPFC and the 
PPC in the gamma- and beta-band, respectively.

Two human EEG studies suggest that feedback 
interactions in the theta-band between areas of the 
medial frontal cortex and visual cortex also contribute 
to the top-down control of visually guided behaviour. 
One study43 recorded EEG in children performing a 
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Go/no-go task
A task that requires a subject 
to perform a behavioural 
response (for example, button 
press) when one stimulus type 
appears, but to withhold a 
response when another 
stimulus type appears.

cross-modal attention task that required them to shift 
their attention between visual and auditory stimuli. 
Alpha-band activity over the visual cortex predicted 
behavioural performance and was suppressed dur-
ing visual attention as compared to auditory attention. 
This accords well with the notion that local alpha oscil-
lations in early sensory regions reflect a ‘pulsed’ func-
tional inhibition of irrelevant processing streams23,90–94. 
Moreover, the amplitude of alpha-band activity over 
the visual cortex was inversely correlated with medial 
frontal theta-band activity. This amplitude correlation 
was missing in children with attention deficit hyperac-
tivity disorder (ADHD)44. The notion that the medial 
frontal cortex exerts top-down control over the visual 
cortex through theta-band oscillations receives further 
support from another EEG study95. Here, during a visual  
go/no-go task, enhanced theta-band coherence and 

directed interactions from medial frontal to occipital 
cortex occurred immediately after a response error had 
been made. The strength of these theta-band interac-
tions predicted behavioural performance in the subse-
quent trial, in line with models of prefrontal control over 
sensorimotor processing65.

The studies reviewed in the preceding sections illus-
trate that phase coherence and amplitude correlation of 
cortical oscillations provide insight into the interactions 
between brain regions that underlie cognitive processes. 
The traditional approach in neuroscience has focused 
on characterizing in detail how sensory, cognitive and 
motor variables are encoded in individual brain regions 
(FIG. 4a). By contrast, the studies reviewed here have pro-
vided a glimpse into the large-scale neuronal interac-
tions that transform these variables to produce cognition 
and goal-directed sensory-guided behaviour.

All of the studies discussed in this Review have dem-
onstrated that the large-scale neuronal interactions 
underlying goal-directed sensory-guided behaviour 
occur within specific frequency bands. But the pattern 
of these frequency-specific effects is complex: different 
frequency bands have been implicated in the same cog-
nitive process and different cognitive processes seem to 
involve identical frequency ranges. How can these find-
ings be reconciled? And what do they teach us about the 
neuronal basis of sensory-guided behaviour and cogni-
tion? Answering these questions requires consideration 
of the factors that govern the different frequency bands of  
large-scale cortical oscillations. There are currently two 
main perspectives on these factors: the first perspective 
focuses on the functional properties of large-scale neu-
ronal interactions, and the second perspective focuses on 
the biophysical properties of neuronal circuits.

Functional properties of interactions
Directionality of interactions. It has been suggested 
that different frequencies of large-scale coherent oscilla-
tions reflect different directions of cortical information 
flow24,89,96–98. Specifically, coherent gamma and beta (or 
alpha) oscillations have been implicated in feedforward 
and feedback interactions, respectively. This notion is 
supported by theoretical96,99,100 and experimental evi-
dence89,97,101. On the basis of laminar recordings in the cat 
visual system, gamma-band coherence and coherence at 
lower frequencies have been linked to bottom-up and top-
down directed interactions, respectively97. Furthermore, 
in the frontoparietal network, gamma-band coherence has 
been specifically demonstrated during bottom-up directed 
visuomotor processing, whereas beta-band coherence was 
found during top-down directed processing89. Also, feed-
back interactions during multisensory processing have 
been associated with beta-band activity101. As we discuss 
below, this notion accords well with recent evidence on 
the laminar specificity of cortical rhythms and long-range 
interactions. However, this notion is challenged by experi-
ments that specifically implicate long-range gamma-band 
coherence in top-down processing85,102. Further studies 
are required to probe how consistently different frequen-
cies (in particular gamma and beta) are associated with 
feedforward and feedback interactions.

Figure 3 | Cortical network dynamics underlying top-down attention.  
a | Long-range coherence among the prefrontal, parietal and visual cortex during a 
spatial attention task in humans. Neuronal activity in the frontal eye field (FEF), posterior 
parietal cortex (PPC) and area MT was reconstructed from the magnetoencephalogram 
(left panel) of subjects performing a demanding visual motion-discrimination task 
during which stimuli were shown in the left and right visual hemifield. During a delay 
interval following the cue to shift attention (‘Delay’, middle panels), long-range phase 
coherence in the gamma-band (35–100 Hz) between the PPC, area MT and FEF was 
enhanced in the hemisphere contralateral to the attended visual hemifield compared 
with the non-attended hemifield (top). At the same time, low-frequency alpha-band 
coherence (5–15 Hz) between area MT and PPC was suppressed in the attended 
hemifield compared with the non-attended hemifield (bottom). Similarly, during 
stimulus presentation (‘Stimulus’, right panels), attention enhanced long-range 
coherence in the gamma-band between the PPC and area MT in the contralateral 
hemifield (top) and suppressed coherence in lower frequency ranges among the PPC, 
FEF and area MT in the contralateral hemifield (bottom). b | Directed gamma-band 
(40–60 Hz) interactions between the prefrontal and visual cortex during spatial 
attention. Local field potentials (LFPs) were simultaneously recorded from the FEF and 
visual area V4 (left panel) of macaque monkeys attending to one of several visual 
targets. Following the cue indicating which target to attend, feedback interactions in 
the gamma-band (quantified by Granger causality) were enhanced between those 
neuronal populations in the FEF and V4 that encoded the attended target (middle 
panel). Approximately 50 ms later, feedforward interactions in the gamma-band were 
also selectively enhanced between these neuronal populations (right panel).  
c | Frontoparietal beta-band (13–18 Hz) coherence during the attentional blink in 
humans. Neuronal activity in the dorsolateral prefrontal cortex (DLPFC) and PPC was 
reconstructed from the magnetoencephalogram (left panel) of subjects detecting 
target letters in a rapid serial visual stream. The rapid and successive presentation  
of target letters causes subjects to miss a substantial fraction of the targets. Correct 
target detection was associated with enhanced long-range beta-band coherence 
(quantified by the phase-locking value) between DLPFC and PPC (middle and right 
panel). d | Long-range beta-band coherence (15–23 Hz) between the frontoparietal (FEF 
and PPC) and visual cortex (area MT) (left panel) during processing of an ambiguous 
visual motion stimulus. Neuronal activity was reconstructed from the electroencephalo-
gram of human subjects presented with two moving bars that could be perceived either 
as bouncing or passing (see stimulus schematic at the top of the right panel). Long-range 
coherence was enhanced in a widespread cortical network including bilateral FEF, PPC 
and MT (middle panel). Coherence within this network was enhanced for approximately 
1 second around the time of bar overlap in the beta-band from approximately 15 to 23 Hz 
(right panel). Beta-band coherence in this network predicted whether the subjects 
perceived the bars as bouncing or passing. The middle and right panels of a are 
reproduced, with permission, from REF. 73 © (2008) Elsevier. The middle and right panel 
of b are reproduced, with permission, from REF. 85 © (2009) American Association for the 
Advancement of Science. The middle and right panel of c are reproduced, with 
permission, from REF. 86 © (2004) National Academy of Sciences. The middle and right 
panel of d are reproduced, with permission, from REF. 87 © (2011) Elsevier.
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Timescale of processing. It has been hypothesized that 
large-scale beta-band oscillations reflect the mainte-
nance of information across long timescales, whereas 
gamma-band activity reflects the encoding of local 
variables that may vary over short timescales (for exam-
ple, owing to sensory inputs)50,72. A related account 
postulates that large-scale beta-band oscillations reflect 
maintenance of the status quo in large-scale cortical net-
works, whereas gamma-band oscillations predominate 
if changes in the stimulus are expected103. In line with 
these notions, beta oscillations have been observed in 
occipital, inferotemporal and prefrontal cortex during 
short-term memory tasks104–110 (see REF. 111 for a com-
prehensive review on memory and neuronal oscillations 
in various frequency ranges). Active maintenance of 
information is not only crucial for accomplishing short-
term memory tasks, but is also a general building block 
of cognition. For example, it is necessary for guiding the 

focus of attention based on behavioural goals66, for form-
ing decisions based on past evidence, and for ‘keeping 
online’ the mapping between sensory inputs and motor 
actions required by the context at hand. Indeed, the 
studies discussed here consistently implicate large-scale 
beta oscillations in top-down attention86,88,89 and sen-
sorimotor decision-making72,83,87. Consistent with this 
notion, in vitro112 and modelling113 studies suggest that 
the neural mechanisms that generate local beta-band 
oscillations may be particularly suited for maintaining 
persistent activity even in the absence of external inputs. 
It should be noted that the factors ‘timescale of process-
ing’ and ‘directionality of interactions’ are not mutually 
exclusive but, in fact, may be closely related. For exam-
ple, intrinsic cognitive processes may typically evolve on 
relatively long timescales and drive feedback interactions 
in recurrent cortico–cortical loops.

Rhythmicity of cognitive processes. Cortical oscillations 
may reflect not only rhythmic neuronal activity during 
continuous cognitive processes but also the rhythmic 
dynamics of cognitive processing itself21,67,114,115. It has 
been suggested that, in addition to a ‘continuous’ mode, 
sensory processing can operate in a ‘rhythmic’ mode in 
which the phases of neuronal oscillations across sen-
sory pathways are aligned to amplify the processing 
of behaviourally relevant rhythmic sensory inputs21,67. 
These rhythmic inputs may result either from the inher-
ent temporal structure of sensory streams (for example, 
speech116) or, during a mode of ‘active sensing’, from 
the rhythmic motor sampling of the environment (for 
example, saccades117, whisking118,119 or sniffing120). In line 
with this notion, low-frequency oscillations (~3 Hz) in 
the primary visual and auditory cortices of monkeys 
are entrained by attended rhythmic inputs in either 
the preferred or non-preferred modality121,122 — this 
mechanism may be particularly suited to enhancing the 
integration of sensory information across modalities122. 
Other findings also support this idea. For example: 
rhythmic microsaccades that trigger retinal transients 
are correlated with the phase of slow LFP fluctuations 
(~3 Hz) across visual areas V1 and V4 in monkeys117; 
covert shifts of attention during visual search are aligned 
to the phase of beta-band oscillations in monkey FEF123; 
the phase of theta-band oscillations in the human audi-
tory system tracks the dynamics of incoming speech sig-
nals116; slow oscillations in primary sensory cortex are 
correlated with whisker position during active whisking 
in rodents118,119; and slow theta-band oscillations in the 
rodent olfactory system are aligned with the respiratory 
cycle during sniffing120. In most of these cases117,120–122, the 
phase of the slow oscillations modulates the amplitude of 
(faster) gamma oscillations such that the gamma oscilla-
tions co-occur with the incoming sensory information. 
EEG recordings in humans also show that the percep-
tion of visual stimuli is rhythmically modulated by the 
phase of slow cortical oscillations in the alpha90–93,114,124  
and theta125 range. The evidence that slow cortical 
oscillations reflect rhythmic sampling of sensory infor-
mation is consistent with psychophysical data on the 
timescale of sensory processing. Indeed, the timescales 

Figure 4 | Large-scale spectral fingerprints of cognitive processes. Schematic 
illustration of how coherent oscillations provide ‘spectral fingerprints’ for regrouping of 
cognitive processes 1–3. a | Studies of neuronal activity in individual brain regions (circles) 
elucidate the activation of different regions (bold circles) and the encoding of  
various cognitive variables (Roman numerals) during different cognitive processes. 
Several cognitive variables (for example, different sensory features) are simultaneously 
encoded in each region, but for simplicity only one variable is depicted per region. Note 
that the pattern of local activity and encoding can be similar between processes.  
b | Coherent oscillations allow for the characterization of the interactions between 
different brain regions (coloured lines) during different cognitive processes. The frequency 
of these oscillations (indicated by the colours) allows the corresponding network 
interactions to be classified and, thus, for the cognitive processes to be regrouped. For 
simplicity, only interactions in one frequency range are depicted between pairs of regions. 
The two regions marked by asterisks illustrate that different frequency-specific interactions 
(yellow versus green lines) can dissociate cognitive processes that show identical effects at 
the level of local activity (compare with the marked regions in a). c | The different 
frequencies of coherent oscillations may allow for the identification of corresponding 
canonical computations that underlie cognitive processes.
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of forms of active sensing (for example, saccades, whisk-
ing or sniffing) and of the corresponding slow oscilla-
tions match well with the timescales of integration of 
sensory information measured in several perceptual 
decision-making tasks68.

Biophysical circuit properties
Ultimately, the frequencies of all neuronal network inter-
actions are determined by the biophysical properties of 
the underlying neuronal circuits. It has been suggested 
that the spatial distance — and hence conduction delays 
— between distant network nodes may be a key factor 
in determining the frequency range of cortical network 
interactions126,127. Longer conduction delays between dis-
tant brain regions may limit the frequency of large-scale 
network oscillations to below the gamma-band (that is, 
beta or lower). Indeed, theoretical126,128 and experimen-
tal38,127 evidence supports the notion that the frequency 
of coherent oscillations drops as the spatial scale of 
processing increases. However, several recent empiri-
cal demonstrations of fast gamma-band coherence 
between distant cortical regions73,85,87,89,102,129 indicate that  
physical distance is probably not the only factor at work.

Local oscillations provide the basic temporal scaf-
folding for interactions between distant brain regions. 
Thus, the frequency of these local oscillations, which are 
determined by the biophysical properties of the local cir-
cuits, may also be an important factor in determining the 
frequencies of large-scale interactions. Considerable pro-
gress has been made in understanding the detailed cir-
cuit mechanisms underlying local cortical oscillations, in 
particular in the gamma-band (BOX 3). However, little is 
known about how these local circuit mechanisms shape 
the frequencies of large-scale neuronal interactions.

Large-scale spectral fingerprints
Here, we attempt to synthesize the two different perspec-
tives outlined above into a common framework. At the 
heart of this framework lie neuronal circuit mechanisms 
at different levels of organization (for example, channel 
kinetics, local circuit motifs and large-scale network 
architectures)13,20,24,25. Our framework is based on two 
key assumptions: first, that the biophysical properties of 
such circuit mechanisms determine the frequency bands 
of neuronal oscillations; and second, that the same cir-
cuit mechanisms determine canonical computations that 
constitute the elementary building blocks of cognition — 
that is, these computations can be combined and applied 
to different inputs in different neuronal networks to 
yield various different cognitive functions.

Two examples illustrate this idea. First, different 
directional modes of processing (‘bottom-up’ versus 
‘top-down’) and the associated frequencies of coherent 
oscillations may result from the specific laminar pro-
files of local rhythms and inter-regional connections24. 
Feedforward and feedback connections originate pri-
marily in superficial and deep cortical layers, respec-
tively130,131, but a growing body of evidence suggests that 
specific oscillatory rhythms (as measured by the LFP) 
and corresponding local patterns of oscillatory neuronal 
synchronization are expressed with different strengths 
across cortical laminae. In particular, in early sensory 
cortices, gamma oscillations seem to dominate in super-
ficial layers98,132–135, whereas slower rhythms in the alpha-
band98,132,136–139 and beta-band100,135,140 seem to dominate 
in deep layers. Thus, gamma-band oscillations and 
feedforward projections in superficial layers may lead to 
bottom-up interactions in the gamma-band. Conversely, 
slower rhythms and feedback projections in deep layers 
may underlie top-down interactions in slower frequency 
ranges in particular in the beta-band. The laminar speci-
ficity of cortical oscillations and long-range projections 
may thus be key for linking different directions of infor-
mation processing with different frequency bands of 
large-scale coherent cortical oscillations24,96–98.

Second, the concept of canonical computations may 
also apply to local oscillations in individual cortical 
regions25. Local gamma oscillations provide an intrigu-
ing example. Recurrent excitatory–inhibitory network 
interactions in a local patch of cortex may determine 
both the frequency of gamma-band oscillations and the 
transformation of neuronal signals in that patch of cor-
tex. As outlined above, the frequency of gamma-band 
oscillations is determined by the decay time of rhythmic 
local inhibition96,126,133,141–147. The same local inhibition 
seems to mediate local computations, such as ‘divisive 
normalization’, that govern the encoding of sensory, cog-
nitive or motor variables throughout the cerebral cor-
tex148–153. Thus, local cortical gamma-band oscillations 
may index a generic cortical computation underlying 
local encoding of information25.

In both of these examples, cortical oscillations index 
canonical computations, that is, processes at a functional 
level of description (for example, feedback or normaliza-
tion) below the one that is commonly used to describe 
cognition. The ideas outlined above suggest that the 

Box 3 | Circuit mechanisms of local cortical oscillations

A combination of in vivo, in vitro and modelling approaches has substantially advanced 
our understanding of the circuit mechanisms that underlie local cortical oscillations, in 
particular those in the gamma-band. Converging evidence96,126,133,141–147 suggests that 
local cortical gamma-band oscillations result from local excitatory–inhibitory feedback 
loops between pyramidal neurons and fast-spiking interneurons. The frequency of 
these local interactions in the gamma-band is determined by the time constant of 
inhibitory GABA

A
 conductances96,126,133,142–147,154 and the balance between excitation  

and inhibition141.
The mechanisms underlying local cortical oscillations in other frequency ranges are 

currently less clear. Recent in vitro and modelling studies suggest a separation of the 
beta-band into lower (beta1) and higher (beta2) frequency ranges and have identified 
potential underlying circuit mechanisms100,112,113,135,140. Beta2 oscillations seem to 
originate primarily from deep cortical layers and, depending on the cortical region at 
hand, may require either chemical or purely electrical synaptic interactions100,135. Beta1 
oscillations may result from the concatenation of those local circuit interactions across 
deep and superficial layers, which also generate local gamma and beta2 
oscillations112,140. An alternative model suggests that local beta-band oscillations result 
from local interactions between alpha-rhythmic feedforward and feedback inputs in a 
cortical column99. Likewise, the mechanisms underlying cortical alpha oscillations are 
still poorly understood and may differ substantially across cortical regions. The 
available evidence suggests that in early sensory regions, alpha oscillations result not 
only from cortico–cortical interactions but also from the interplay between alpha 
rhythms generated in deep cortical layers136–139,187,188,215 and in the thalamus187,188,215,216.  
In higher-order sensory regions, alpha oscillations seem to primarily originate from 
superficial cortical generators136.
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frequency bands of coherent large-scale oscillations 
constitute fingerprints of these canonical computations 
(FIG. 4). Thus, we refer to these large-scale oscillations 
as ‘spectral fingerprints’. Spectral fingerprints provide 
valuable information about the circuit mechanisms of 
cognition, regardless of whether or not they have a direct 
computational role.

Spectral fingerprints at work. If these ideas are correct, 
spectral fingerprints point to an intermediate level of 
description, a level in between the processes defined by 
cognitive psychology and the underlying neuronal circuit 
interactions. This level of description may yield a new tax-
onomy of cognitive processes in terms of their mechanis-
tic building blocks (FIG. 4). The studies on decision-making 
and attention discussed above provide examples for how 
the notion of spectral fingerprints may contribute to novel 
views on the underlying canonical computations.

These studies suggest that processes that are often 
conceptualized as monolithic entities across different 
tasks may turn out to be associated with distinct large-
scale cortical network interactions. This is indicated, 
for example, by the different large-scale oscillations 
associated with top-down attention as discussed above. 
Depending on the task, this process has been associated 
with long-range coherence in the beta-band86–89 or in 
the gamma-band73,85. This suggests that spectral finger-
prints can distinguish processes that seem to be similar 
at the behavioural level and even at the level of neuronal 
processing in individual brain regions (compare the two 
regions marked by asterisks in FIG. 4). It is the differ-
ent frequency ranges of their interaction that point to 
the different underlying computations. For example, 
interactions in the gamma- and beta-band may index 
the bottom-up and top-down directed cortical informa-
tion flows, respectively, that predominate in different 
behavioural tasks.

Conversely, spectral fingerprints may enable the identi-
fication of canonical computations that are shared among 
cognitive processes that have typically been considered 
as distinct entities in cognitive neuroscience (FIG. 4c).  
For example, the studies discussed here consistently 
demonstrate the presence of beta-band interactions 
between posterior parietal and frontal cortices during 
both sensorimotor decision-making72,83,87 and top-down 
attention86,88,89. We speculate that for both processes, 
large-scale beta-band activity indicates identical canoni-
cal computations in these networks. For example, both 
processes may involve the maintenance of information 
(decision variables or sensory–motor contingencies) 
through large-scale reverberation in recurrent net-
works79, and for both processes, these reverberations 
may drive top-down interactions along the sensorimotor 
hierarchy (see above). More specifically, during decision-
formation, high-level decision or motor stages may send 
specific top-down signals to sensory stages55 that are 
similar to the top-down signals in top-down attention 
tasks. In other words, even for sensorimotor tasks that are 
classically thought to only require bottom-up informa-
tion flow, the brain recruits top-down interactions54–56. 
Therefore, at the level of these large-scale interactions, 

decision-making and attention may be highly similar, 
and large-scale correlated beta-band oscillations may be a  
fingerprint of this common canonical computation.

Currently, the extent to which canonical compu-
tations can be inferred from spectral fingerprints is 
unknown. The strength of this inference will depend on 
how specific the link between frequencies and circuit 
mechanisms turns out to be. Even for the same under-
lying computation the exact frequency of large-scale  
oscillations can be highly variable, which may compli-
cate a direct inference141,154,155. Moreover, although some 
frequency bands may be tightly linked to specific circuit 
mechanisms, this relationship may be less clear for other 
bands. Finally, the link between fingerprints and canoni-
cal computations does not necessarily generalize across 
cortical networks. A particular frequency band may 
reflect one canonical computation in some anatomical  
networks, but may reflect a different mechanism in  
other networks. There may even be characteristic fre-
quencies for specific anatomical networks that do not 
generalize to other networks. For example, theta-band 
phase coherence has been consistently implicated in 
interactions between the prefrontal cortex and hip-
pocampus156–161 and may thus reflect a characteristic 
frequency for this specific anatomical network.

Conclusions and future directions
We have focused our concept of spectral fingerprints on 
phase-coherent oscillations between different cortical 
regions, but this notion may extend to other frequency-
specific measures of neuronal population activity as 
well. First, the local power of oscillations may also 
serve as a spectral fingerprint of canonical computa-
tions25. We have discussed local gamma-band activity 
as a showcase for this notion. However, evidence sug-
gests that long-range coherence and local power in vari-
ous frequency bands can be dissociated73,83,87,89. Thus,  
frequency-specific local power and large-scale coherence  
may provide independent information about neural 
computations. Second, frequency-specific amplitude 
correlations between cortical regions also seem to be 
informative about underlying network computations. 
It remains to be determined to what extent amplitude 
correlation provides redundant or complementary infor-
mation as compared to phase coherence. Third, interac-
tions between different frequency bands may also index 
specific cortical computations. Interactions between 
frequencies can occur as phase–phase, phase–amplitude 
or amplitude–amplitude coupling162. Coupling between 
the phase of slower rhythms and the amplitude of faster 
rhythms (a phenomenon that is often referred to as 
‘nesting’) seems to be ubiquitous across various cortical 
systems36,109,116,120,122,163–171. This type of cross-frequency 
interaction provides a mechanism by which slower 
rhythms coordinate local or faster computations that 
are expressed at higher frequencies. As outlined above, 
evidence suggests that slow rhythms reflect rhythmic 
cognitive processes such as the rhythmic sampling of 
sensory information. Thus, phase–amplitude coupling 
may be a fingerprint of the temporal coordination —  
by slower rhythmic cognitive processes — of canonical 
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computations that are reflected at higher frequen-
cies. Other types of cross-frequency interactions (for 
example, phase–phase or amplitude–amplitude) may 
serve as fingerprints of interactions between different 
canonical computations expressed in the interacting 
frequency bands.

Identifying the spectral fingerprints of the canonical 
computations of cognition would have important impli-
cations beyond basic neuroscience. Many neuropsychi-
atric disorders probably result from dysfunctions of 
specific network computations. Currently, neuropsy-
chiatric disorders are classified at a phenomenological 
level172, and most biomarkers of these disorders do not 
capture the heart of the underlying network dysfunc-
tion. The spectral fingerprints of neuronal interactions 
may turn out to be sensitive markers of such disorders. 
Indeed, a rapidly growing body of evidence indicates 
that local oscillations and their large-scale coherence 
are altered in various diseases, including schizophrenia, 
Alzheimer’s disease and autism spectrum disorders (see 
REFS 173–175 for reviews). In schizophrenia, impaired 
local oscillations176,177 and large-scale coherence178 in the 
gamma-band seem to provide a spectral fingerprint of 
deficient GABAergic transmission173,179,180.

The studies reviewed here provide a glimpse into 
the large-scale circuit dynamics that mediate cogni-
tion. They also raise important new questions for future 
research. First, more studies are required to link large-
scale oscillations to well-controlled cognitive processes. 
What explains the variability in the frequency ranges 
of large-scale oscillations that have been identified for 
apparently similar cognitive processes? And is there a set 
of large-scale fingerprints that are common to seemingly 

distinct cognitive processes? A broader basis of empirical  
studies will help to identify consistent links between 
frequency-specific large-scale interactions and specific 
cognitive processes. Second, more studies are required 
to unravel the circuit mechanisms that underlie large-
scale cortical oscillations. What roles do layer- and 
cell-specific projections between cortical regions have? 
How specific is the link between the frequencies of local 
and large-scale oscillations and the underlying circuit 
mechanisms? And what is the relationship between the 
frequencies of local oscillations and their large-scale 
coherence or amplitude-correlation? Third, how do 
subcortical systems shape the spectral fingerprints of 
cognitive processes in the cerebral cortex? It has become 
clear in recent years that brainstem neuromodulatory 
systems are not merely unspecific regulators of coarse 
behavioural states but have important roles in cognitive 
processes such as attention and decision-making181–184. 
These neuromodulatory systems alter the frequency 
range and strength of local cortical oscillations40,100,185, 
and it is therefore likely that they shape the frequen-
cies of large-scale cortical interactions during cogni-
tion. The thalamus may also have an important role in  
shaping large-scale cortical oscillations186. Cortical  
alpha-band136,139,187,188 and beta-band189–191 oscillations 
seem to involve reciprocal thalamo–cortical loops. 
Furthermore, higher-order thalamic nuclei such as 
the pulvinar may be crucial for synchronizing oscil-
lations186,191–197 and facilitating information transfer198 
between distant cortical regions. Answering these 
questions will further our understanding of large-scale 
correlated oscillations as fingerprints of the canonical 
computations underlying cognition.
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