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2000). Spatial attention to visual targets contained in one visual
hemifield induces a selective lateralization of MEG power,
relative to the target, in different frequency bands (Jensen and
Mazaheri 2011; Siegel et al. 2008; Wyart and Tallon-Baudry
2008). During MIB, power modulations reflecting spatial at-
tention might be selective for the target, the perception of
which changes over time, as shown in an MIB study using one
target per hemifield (Hindel and Jensen 2014). In contrast to
the spatial attention prediction, we found that the beta-band
modulation was not selective for target location during MIB
(Fig. 3B, leff) and Replay-active (Fig. 3B, middle). There was
no evidence for lateralization in the beta range, even for the
most sensitive quantification of the beta-band modulation (dis-
appearance — reappearance difference; dotted lines). Second,
the overall power modulation (i.e., ipsilateral and contralateral
sensors pooled; solid lines) was significantly stronger than the
lateralization. Note that power suppression in the alpha band
(around 10 Hz), in contrast, exhibited a trend to significant
lateralization, in particular during MIB, in line with the results
of Héndel and Jensen (2014). In sum, the beta-band modulation
during perceptual changes is widespread across visual cortex,
distinct from spatially selective attention signals that have been
measured with the use of similar techniques in other studies.
Consequently, collapsing the beta-band modulation across sub-
jects irrespectively of target location yielded a robust modula-
tion (Figs. 2 and 3).

Given the strong link of the beta-band modulation to behav-
ioral report, another possible source of the top-down modula-
tion in visual cortex is the motor act (button presses/releases)
used for report. Motor movements are commonly associated
with a suppression of beta-band oscillations in the motor
system (Donner et al. 2009; Pfurtscheller and Lopes da Silva
1999). Indeed, we observed strong beta-power modulation over
left and right motor cortices during report (Figs. 3C and 4A).
However, in line with previous studies (Donner et al. 2009;
Pfurtscheller and Lopes da Silva 1999), this motor beta-power
modulation was stereotypically negative, irrespective of the
type of report, in sharp contrast to the beta modulation over
visual cortex (Fig. 3C). Furthermore, the amplitude of the
motor beta suppression did not differ between disappearance
and reappearance reports (Fig. 4), again in sharp contrast to the
visual cortex beta modulation (Fig. 3).

The dissociation between the visual beta-band modulation
and motor act was also evident in a separate analysis of the two
recording sessions, in which the mapping between perceptual
switch and motor response was flipped (Fig. 5). On day 1,
subjects pressed the response button to indicate target disap-
pearance and released the button to indicate target reappear-
ance; on day 2, this mapping was reversed (Fig. 5A). The
beta-band modulation in visual cortex was qualitatively iden-
tical for both mappings, with a significant suppression of beta
power for disappearance and an enhancement for reappearance
(Fig. 5, B and C).

In sum, the beta-band modulation in visual cortex was
decoupled from the target, and thus unlikely to reflect spatial
attention, and it was also decoupled from activity in the motor
cortex that was related to the behavioral report. A third possi-
bility, which is consistent with all results presented in this
report, is that the beta-power suppression during target disap-
pearance is driven by the central process that transforms the
perceptual change into behavioral report: the beta-band sup-
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Fig. 4. Beta power over motor cortex does not encode report. A and B: same
as Fig. 3, A and B, but for sensors overlying motor cortex during MIB and
Replay-active. A: frequency spectra of MEG power modulation. B: reappear-
ance — disappearance difference for overall power modulation and lateraliza-
tion contralateral vs. ipsilateral (contra — ipsi) with respect to hand used for
report.

pression /) is closely linked in time to the behavioral report, 2)
occurs irrespective of whether this perceptual change is spon-
taneous (MIB) or stimulus-evoked (Replay), and 3) is unaf-
fected by large changes in the stimulus configuration (Replay-
no-mask), but 4) is strongly affected by eliminating the need
for behavioral report (Replay-passive).

Top-Down Modulation Predicts Duration of Perceptual
1llusion

We next tested for a possible functional role of the transient
modulation in visual cortex: stabilization of the subsequent
MIB illusion. To this end, we correlated the amplitude of the
transient beta suppression to the duration of the subsequent
MIB target disappearance (i.e., using MIB duration as an index
of perceptual stability; see MATERIALS AND METHODS). Indeed,
stronger beta suppressions (i.e., populating the lower rank bins)
were followed by longer MIB durations (Fig. 6A, right). This
correlation was highly significant across a range of different
bin sizes as well as without normalizing individual MIB
durations by the median per subject (data not shown).

There was no significant correlation to the preceding target
visible duration (Fig. 64, left) and a significant difference in the
correlations for succeeding vs. preceding percept duration
(P = 0.03, permutation test). Thus, as for the correlation to
variability of cortical activity, the correlation to MIB duration
was directed in time, specific for the succeeding target disap-
pearance.

As shown in the previous sections, the beta suppression (and
its relation to trial-to-trial variability) was indistinguishable
between MIB and Replay-active. The key difference between
both conditions was the stability of perception: Target percep-
tion was bistable in MIB (i.e., percept durations governed by
cortical interactions) but stable during Replay (i.e., percept
durations governed by the physical on- and offsets of the
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Fig. 5. Beta-power transient over visual cortex is unrelated to motor act. A: opposite mappings of perceptual event to motor act on days / and 2. See main text
for details. B and C: same as Fig. 3, A and C, but separately for both mappings (i.e., recording days).

target). Accordingly, as expected, there was no significant
correlation during Replay-active (Fig. 6B), and the correlation
was significantly smaller (i.e., less negative) than during MIB
(P = 0.002, permutation test).

Finally, the association between beta-band activity and MIB
disappearance duration was specific for the sensors overlying
visual cortex. There was no significant correlation between the
beta-power suppression over motor cortex (which was even
stronger than that over visual cortex) during target disappear-
ance and the subsequent MIB duration (r = —0.34, P = 0.34,
permutation test; data not shown). In line with the findings
reported above, this indicates that the beta suppression during
target disappearance reports reflects a top-down process con-
fined to visual cortex and distinct from the process suppressing
beta-band power over motor cortex.

Modulation is Not Due to Microsaccades

One potential concern is that the power modulation in visual
cortex may have been due to subtle changes in fixational eye
movements during the perceptual switches (Bonneh et al.
2010; Hsieh and Tse 2009). Specifically, target disappearance
reports during MIB and Replay are accompanied by a reduc-
tion in the rate of microsaccades (Bonneh et al. 2010). This
reduction may have been associated with MEG power suppres-
sion in the beta range.

This concern seems unlikely for two reasons. First, our
analysis excluded all trials containing blinks and saccades that
were detectable with EOG. Second, smaller microsaccades
during sustained visual stimulation induce broadband (from
low to high frequency) local field potential power enhance-
ments in visual cortex (Bosman et al. 2009) and associated eye
movement artifacts in the extracranial EEG (Yuval-Greenberg
et al. 2008). A modulation of microsaccades, therefore, pre-
dicts broadband power modulations, whereas the power mod-
ulation reported here was confined to the beta band.

To conclusively rule out this concern, we performed an
additional control experiment in which we again measured
MEG power modulations over visual cortex while simultane-
ously monitoring microsaccades with a high-resolution infra-
red eye tracker (see MATERIALS AND METHODS). The microsac-
cade rate exhibited similar modulations as previously reported
(Bonneh et al. 2010), decreasing before MIB target disappear-
ance and increasing before reappearance (Fig. 7A). However,
during both target disappearance and reappearance, no time-
frequency cluster of the MEG power modulation was significantly
correlated with this change in microsaccade rate (Fig. 7B).

Finally, we tested whether the transient beta-band modula-
tion was also evident in the absence of any microsaccades. We
selectively averaged MIB disappearance and reappearance tri-
als that contained no microsaccades (specifically in the time
window from —0.35 to 0.25 s relative to report in which
microsaccades could have evoked MEG power modulations)
and found robust, statistically significant transient beta-band
suppression for target disappearance (Fig. 7C, left) with a
frequency profile similar to that in the main experiment (Fig.
7D). Although beta-band modulation for reappearance was
again enhanced (Fig. 7C, right), it did not reach statistical
significance, presumably because of the lower number of
subjects that had a sufficient number of microsaccade-free
trials to be included in this analysis (See MATERIALS AND
METHODS). These findings replicate the main neurophysiologi-
cal signature reported in this work in an independent group of
subjects (on a different MEG system) and further rule out the
concern that this signature may be due to microsaccades.

DISCUSSION

We examined whether transient top-down modulations in
visual cortex during perceptual changes in a multistable illu-
sion may have an impact on the subsequent perceptual state.
Although some previous indirect evidence points to the exis-
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Fig. 6. Beta-power transient predicts stability of MIB illusion. Pearson corre-
lation between beta-power suppression during disappearance report and the
duration of the “preceding percept” (i.e., target visible, leff) or “succeeding
percept” (i.e., target invisible, right). Single-trial percept durations were
normalized by each subject’s median percept duration (see main text for
details). A: MIB. B: Replay-active. Error bars indicate SE (n = 11 subjects).

tence of an active stabilization mechanism during continuous
(Einhauser et al. 2008) or intermittent viewing (Leopold et al.
2002) of ambiguous stimuli, a neural signature of such a
mechanism has not yet been observed. We reasoned that an
active stabilization mechanism should be evident as a modu-

Fig. 7. Beta-band MEG power modulation dur-
ing MIB is not due to microsaccades. A: mod-
ulations of microsaccade rate for MIB target
disappearance and reappearance. Gray shaded
areas represent the intervals used for computing
the difference between the number of micro-
saccades before and around report (rate
change). Error bars indicate SE across subjects.
B. time-frequency representation of the corre-
lation between microsaccade rate change and
MEG power modulation around MIB disap-

>
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=== Re-appearance

lation of neural activity in visual cortex, which predicts the
stability of the subsequent cortical state and the perceptual
interpretation of the ambiguous stimulus. Consistent with this
idea, we found a transient modulation of beta-band activity in
visual cortex right around reports of MIB target disappear-
ances. The amplitude of this modulation predicts the duration
of the subsequent perceptual suppression of the target. This
modulation was ) closely coupled to subjects’ behavioral
reports of the perceptual changes and 2) independent of whether
the perceptual change was initiated endogenously (MIB) or by an
external stimulus change (Replay), but 3) contingent on the
changes’ behavioral relevance and/or unpredictable timing and 4)
decoupled from the components of the MIB stimulus (target and
mask), as well as from 5) the motor cortical activity leading to the
final button press reports.

Figure 8 illustrates our interpretation of the origin and
functional impact of the transient beta-band suppression during
disappearance reports. Our results suggest that this signal is of
top-down origin, triggered by the process that transforms the
perceptual change into a behavioral report (Fig. 84). We refer
to this transformation as the perceptual decision, acknowledg-
ing that our task did not entail a choice between two options.
Because the decision is independent of the cause of the per-
ceptual change (intrinsic or stimulus evoked), the beta-band
suppression is evident during MIB and its replay. However,
when there is no need for reporting the perceptual change
(Replay-passive), no beta suppression is observed.

Whatever the exact nature of this top-down signal, it seems
to alter (stabilize) the internal state of visual cortex (Fig. 8B).
The movement of a “percept variable” (green “ball” in Fig. 8B)
(Braun and Mattia 2010; Moreno-Bote et al. 2007) across an
energy landscape with two valleys (basins of attraction; in the
case of MIB, corresponding to target visible and invisible)
provides a useful metaphor for understanding this effect (Deco
and Romo 2008). In this scheme, the stabilizing state change
can be conceived as an active force (red arrow) transiently
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deepening the valleys. Only if the sensory input is ambiguous
and, consequently, the perceptual interpretation meta-stable
(i.e., during MIB) does this transient state change culminate in
a perceptual stabilization: the stronger the state change (i.e.,
longer red arrow) during a perceptual transition, the longer the
subsequent perceptual illusion. During Replay, the physical
removal of the target stimulus instantaneously alters the energy
landscape, thus overriding the effect of the internal state
change and precluding a link to percept duration. Note that we
use the term “state change” to refer to a change in the dynamics
of cortical activity (i.e., the shape of the energy landscapes in
Fig. 8B) and not perception. The changes in perceptual state
(i.e., target disappearances and reappearances) experienced by
the subject correspond to the hopping of the percept variable
from one valley of this landscape to the other.

Different from other multistable illusions, the MIB illusion
is asymmetric in the sense that it only entails a single nonve-
ridical percept (target invisible). This might explain why the
top-down modulation is limited to the target disappearances.
The power enhancement differed functionally from the target
reappearance in that it also occurred during passive viewing of
target stimulus onsets and depended on the presence of the
mask. It seems likely that these functional differences are due
to the inherent asymmetry of MIB and would not occur in
symmetric bistable phenomena, such as binocular rivalry

(Brascamp et al. 2006) or 3D structure from motion (Klink et
al. 2008). Despite the differences in symmetry, recent psycho-
physical work (Bonneh et al. 2014) establishes analogous
dynamical properties for MIB as for the above two phenomena.
We thus hypothesize that analogous beta suppression effects as
observed during MIB target disappearance will occur during all
switches in these illusions. Future work should test this hy-
pothesis.

Mounting evidence suggests that the widespread state
change in visual cortex characterized in this work might be a
general phenomenon. Several studies reported modulations of
population activity in human and monkey early visual cortex,
which were largely decoupled from cortical stimulus represen-
tations but linked to behaviorally relevant events (Cardoso et
al. 2012; Choe et al. 2014; de-Wit et al. 2012; Donner et al.
2008, 2013; Jack et al. 2006; Hsieh and Tse 2009; Sirotin and
Das 2009; Swallow et al. 2012; Wilke et al. 2006). Specifically,
several human fMRI studies reported retinotopically wide-
spread modulations in V1 during perceptual reports in MIB
(Donner et al. 2008; Hsieh and Tse 2009), bistable motion
binding (de-Wit et al. 2012), and visual discrimination tasks
(Choe et al. 2014). Local field potential results from monkey
visual cortex and thalamus (Gail et al. 2004; Wilke et al.
2006, 2009) point to modulations in the alpha and beta
bands as electrophysiological underpinning of the wide-
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spread fMRI signal modulations associated with bistable
perceptual dynamics. By establishing the retinotopically
widespread nature and functional consequences of the
switch-related beta-band modulations in the human brain,
our current MEG results add critical new information to this
emerging body of evidence.

What is the source of the beta-band modulation in visual
cortex? At the functional level, the modulation could be a
phasic arousal signal depending on the task demands (thus
absent during passive viewing) and the timing of events that
drive the modulation. It could also indicate that a response has
been made. Although these possibilities should be addressed in
future work, we find that the modulation is specific for the type
of the perceptual change (occurring specifically during target
disappearance) and that it is dissociated from activity evident
over motor cortex. Thus our observations are inconsistent with
a nonspecific task- or response-related mechanism, or a direct
copy of activity from the motor cortex. At the neural level, the
beta-band modulation in visual cortex might originate from
higher cortical areas (Nienborg and Cumming 2009; Siegel et
al. 2012), the thalamus (Wilke et al. 2009), or neuromodulatory
brainstem centers (Aston-Jones and Cohen 2005; de Gee et al.
2014; Einhauser et al. 2008; Hupe et al. 2009; Parikh et al.
2007) or from a combination of cortical feedback and neuro-
modulation (Noudoost and Moore 2011).

Indeed, neuromodulatory brainstem systems, such as the
noradrenergic locus coeruleus and the cholinergic basal fore-
brain systems, also exhibit transient activity during perceptual
reports, which can reflect the content of the report (Aston-
Jones and Cohen 2005; de Gee et al. 2014; Einhauser et al.
2008; Hupe et al. 2009; Parikh et al. 2007; also Kloosterman
NA, Meindertsma T, van Loon A, Bonneh Y, Lamme VA, and
Donner TH, unpublished observations). Further evidence sug-
gests that beta-band power modulations in visual cortex during
visual stimulation might index changes in neuromodulatory
state (Belitski et al. 2008; Donner and Siegel 2011). If such
beta-band modulation emerges from the interaction between
neuromodulation and the bottom-up stimulus drive, this would
explain why the beta-band modulation colocalizes with the
response to the MIB stimulus, despite the more widespread
neuromodulatory projections to the cortex. Finally, neuro-
modulatory brain stem systems are in a position to stabilize the
perceptual dynamics because they can dynamically alter key
cortical circuit parameters in profound ways. In particular,
neuromodulators suppress cortical variability (Polack et al.
2013) and may amplify inhibitory interactions in cortical cir-
cuits (Haider et al. 2013). In competitive networks underlying
multistable perception (Braun and Mattia 2010; Moreno-Bote
et al. 2007), a transient boost of mutual inhibition is equivalent
into the deepening of valleys shown in Fig. 7B.

The cerebral cortex continuously undergoes changes in in-
ternal state (Harris and Thiele 2011; Lee and Dan 2012;
Steriade 2000). Whereas these state changes have traditionally
been associated with slow fluctuations of arousal level (Haider
et al. 2013; Harris and Thiele 2011; Steriade 2000), some of
these state changes co-occur with rapid cognitive processes
(Aston-Jones and Cohen 2005; Gilbert and Sigman 2007;
Parikh et al. 2007). Our current results are consistent with the
idea that the active report of perceptual changes triggers a
cortical state change, which can stabilize an illusory percept.
Future work should address whether the effect we have iden-

tified here for the MIB illusion generalizes to other perceptual
phenomena (Fischer and Whitney 2014; Jazayeri and Movshon
2007; Stocker and Simoncelli 2008), as well as to more
complex decisions beyond the domain of perception (Festinger
1957).
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