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Perceptual decision-making entails the transformation of graded sensory signals into categorical judgments.
Often, there is a direct mapping between these judgments and specific motor responses. However, when
stimulus-response mappings are fixed, neural activity underlying decision-making cannot be separated
from neural activity reflecting motor planning. Several human neuroimaging studies have reported changes
in brain activity associated with perceptual decisions. Nevertheless, to date it has remained unknown where
and how specific choices are encoded in the human brain when motor planning is decoupled from the deci-
sion process. We addressed this question by having subjects judge the direction of motion of dynamic ran-
dom dot patterns at various levels of motion strength while measuring their brain activity with fMRI. We
used multivariate decoding analyses to search the whole brain for patterns of brain activity encoding sub-
jects' choices. To decouple the decision process from motor planning, subjects were informed about the re-
quired motor response only after stimulus presentation. Patterns of fMRI signals in early visual and inferior
parietal cortex predicted subjects' perceptual choices irrespective of motor planning. This was true across
several levels of motion strength and even in the absence of any coherent stimulus motion. We also found
that the cortical distribution of choice-selective brain signals depended on stimulus strength: While visual
cortex carried most choice-selective information for strong motion, information in parietal cortex decreased
with increasing motion coherence. These results demonstrate that human visual and inferior parietal cortex
carry information about the visual decision in a more abstract format than can be explained by simple motor
intentions. Both brain regions may be differentially involved in perceptual decision-making in the face of
strong and weak sensory evidence.

© 2012 Elsevier Inc. All rights reserved.

Introduction

provide converging evidence that, in the face of uncertainty, the
brain produces perceptual choices by accumulating weak signals

Our brain continuously transforms noisy and incomplete sensory
signals into categorical judgments about the state of the outside
world. Much progress has been made in understanding the neural
mechanisms underlying such decision-making processes. Monkey
neurophysiology (Gold and Shadlen, 2000; Roitman and Shadlen,
2002; Romo et al., 2002; Salinas et al., 2000; Shadlen and Newsome,
2001) and human neuroimaging studies (Donner et al., 2009;
Heekeren et al., 2004, 2006; Ho et al.,, 2009; Tosoni et al., 2008)
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from sensory cortical areas.

It has, however, remained largely unknown how perceptual
choices are encoded when they are decoupled from action planning.
Most previous studies directly mapped perceptual choices (e.g. up-
ward vs. downward motion) onto motor responses (e.g. right vs. left
button press) and in that way treated perceptual decision-making as
a problem of action selection (Freedman and Assad, 2011; Gold and
Shadlen, 2007). Consequently, the decision process was reflected in
neuronal activity in sensorimotor and motor brain regions, both in
macaque monkeys (Horwitz and Newsome, 1999; Kim and Shadlen,
1999; Salinas and Romo, 1998; Shadlen and Newsome, 2001) and in
humans (Donner et al., 2009; Tosoni et al., 2008). In monkeys, a subset
of parietal neurons also encoded perceptual choices when the deci-
sion was decoupled from the motor response (Bennur and Gold,
2011), but this study focused on a single brain area in the macaque.
It has remained an open question how such abstract perceptual
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choices are represented in the human brain and in particular which
brain regions participate in the decision process.

Although a number of recent neuroimaging studies have charac-
terized neural substrates of visual perceptual choice in the human
brain (Domenech and Dreher, 2010; Heekeren et al., 2004, 2006; Ho
et al., 2009; Kayser et al., 2010a, 2010b; Kovacs et al., 2010; Li et al.,
2009; Liu and Pleskac, 2011; Ploran et al., 2007; Tosoni et al., 2008),
the vast majority of these studies focused on which brain areas are
“active” during the decision process. Such activity may reflect a num-
ber of processes associated with decision-making (e.g., attention,
arousal, conflict monitoring) which are not specific to the decision it-
self. For that reason, it has remained largely unknown which regions
of the human brain are specifically involved in encoding perceptual
decision signals and thus may participate in forming the subjects'
specific choices (e.g. motion up vs. motion down). Although a causal
contribution of a particular brain region can only be investigated
with lesion and neurostimulation techniques (Hanks et al., 2006), a
distinction of choice-specific from non-specific brain signals would
strongly contribute to our understanding of the neural processes un-
derlying perceptual decision-making.

Here, we used fMRI to investigate choice-encoding by applying
multivoxel pattern analysis to human brain signals. Subjects formed
decisions about the net motion direction in dynamic random dot
patterns of various strengths spanning psychophysical threshold.
To pinpoint brain regions that encode choices independent of the cor-
responding motor plans, subjects were informed about the association
of choice and response only after stimulus presentation by means of a
stimulus-response mapping screen. The use of a response-mapping
screen that varies pseudo-randomly from trial to trial effectively
decorrelates specific perceptual choices (“up” vs. “down”) from the
specific motor responses (left vs. right button press). This obviates
the need to jitter events in time for separating activity patterns
encoding choices and motor responses. Effectively, for one particular
choice roughly the same number of trials carry information about
each button press, annihilating the classifiers' ability to separate the
perceived direction of motion based on the button presses. For exam-
ple, while one choice may be directly followed by a right button press
on some trials, it will be followed by a left button press on approxi-
mately the same number of trials. For that reason, the classifier will
not pick up any motor response-specific brain signals, but only
choice-specific brain signals.

In addition to measuring the levels of overall fMRI responses, we
targeted brain regions carrying specific information about subjects'
upcoming choices by means of a “searchlight” decoding analysis scan-
ning the entire brain (Kriegeskorte et al., 2006; Haynes et al., 2007).
We applied effects-of-interest group analyses across different levels
of sensory evidence to identify decision-related brain signals at the
group level. These statistical contrasts have the advantage of being
unbiased towards the amount of choice-selective information across
different levels of sensory evidence. In other words, our approach
makes no specific assumptions about where to expect meaningful
patterns of brain activity and how the amount of information changes
across different levels of sensory evidence.

Materials and methods
Subjects

25 neurologically healthy volunteers participated in the study.
Three participants were subsequently excluded from the analysis
due to strong decision biases in the scanning session (see below).
The remaining 22 participants (11 female, mean age: 25.23, SD:
3.69 years) were right-handed and had normal or corrected-
to-normal vision. Subjects were paid 7 € per hour for training and 10
€ per hour for the scanning session. All participants provided written
informed consent. The study was approved by the ethics committee

of the Max-Planck Institute for Human Cognitive and Brain Sciences
(Leipzig).

Stimuli and procedure

Stimuli were generated using Matlab (MathWorks) and the Cogent
Toolbox (http://www.vislab.ucl.ac.uk/Cogent). For the training ses-
sions, stimuli were presented on a TFT monitor at a frame rate of
60 Hz in a dimly lit room. In the MR scanning session, stimuli were
projected with an LCD projector (60 Hz frame rate) onto a translucent
screen in the bore of the scanner and viewed through a surface mirror
mounted on the head coil.

All stimuli were drawn in white on black background unless noted
otherwise. Random dot motion (RDM) kinematograms were created
in a square region, but only dots in an annular region were presented
on the screen (central aperture diameter: 3 dva, annulus diameter:
15 dva). Each dot (diameter: 0.10 dva) was assigned a fixed direction
of motion from one out of twelve equally spaced possible directions
to prevent judgments to be based on only a small number of dots
that moved straight in a target direction. This means that even for
zero coherence, 8.33% coherent motion was present, but the net co-
herence in a given direction was indeed zero. Dots that left the square
region were redrawn on the opposite side of the square. Coherence
was varied by the percentage of dots moving coherently upwards
(90°) or downwards (270°). Average dot density was 4 dots/dva>
and dot speed was 6°/s. To reduce the possibility of tracking individ-
ual dots, each dot was assigned a halflife of 100 ms.

The task of the subjects was to judge whether the net global mo-
tion was upward or downward and to indicate this judgment by press-
ing a button after stimulus offset and following the stimulus-
response mapping provided on the current trial. The association
between perceptual choice (upward vs. downward motion) and
motor response (left- vs. right-hand button press) was varied from
trial by trial by the use of a “response-mapping screen” presented
after the RDM stimulus. This allowed to decouple movement-
selective from choice-selective neuronal activity during decision-
formation (Bennur and Gold, 2011; Haynes et al., 2007; Rahnev
et al, 2011) and decorrelated choice-related and motor response-
related BOLD signals that would otherwise be difficult to separate
due to the sluggish BOLD response. The response-mapping screen
consisted of two arrows presented left and right of fixation (arrow:
0.38 dva widthx 1 dva height, distance from fixation: 1 dva), one
arrow pointing up and the other pointing down. The arrow that
matched the subjects’ judgment of the motion direction indicated
the hand with which they had to respond.

We used an interrogation protocol in which the decision time is
controlled by the experimenter rather than by the subject (Bogacz
et al.,, 2006). The sequence of events within one trial is illustrated in
Fig. 1a. Each trial started with a central fixation cross. After a brief
cue (yellow fixation cross; onset: 1000 ms, offset: 500 ms prior to
RDM onset), RDM stimuli were shown for a fixed duration of
1500 ms, during which the subject formed a decision. Stimulus
presentation was followed by the response-mapping screen for
1500 ms, and a variable intertrial interval of 1000, 3000, or 5000 ms.
Thus, the total trial duration was on average 6 s. During the presenta-
tion of the response-mapping screen subjects could indicate their
decision by pressing a button with the left or right index finger. In
training sessions, subjects received visual feedback by a change of
the fixation cross to green or red, indicating correct and incorrect re-
sponses, respectively. In the scanning session, subjects did not receive
feedback on a trial-by-trial basis, but were informed about their per-
formance after each experimental run to increase their motivation.

All participants were trained for 2.5 h in two sessions prior to scan-
ning to stabilize performance and reduce intrinsic decision biases. Inex-
perienced subjects were trained to maintain fixation using the Troxler
fading illusion (Troxler, 1804). For training sessions, the method of
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Fig. 1. Experimental design and behavioral results. (a) Random dot motion stimuli of
varying coherence were shown for 1500 ms, followed by a “response-mapping screen”
at which subjects had to indicate whether the majority of dots was moving up or down.
(b) The coherence of the dots varied between 0% and 50%, with two individually cali-
brated levels around 65% and 85% threshold. (c) The response-mapping screen was in-
troduced to decorrelate motion directions and motor plans. (d) Behavioral results
indicate that behavioral accuracies well matched the expected levels of performance.
Also response times varied with motion coherence. Error bars denote standard error
of the mean.

constant stimuli was used (3.125%, 6.25%, 12.5%, 25%, 50% motion co-
herence). Trials from the second session were fit with a Weibull func-
tion to determine each subject's perceptual 65% and 85% threshold. In
the scanner prior to the main experiment, subjects performed 64 trials
of a behavioral calibration block using the QUEST procedure (Watson
and Pelli, 1983) to estimate their 75% threshold and manually correct
for small changes in threshold between sessions. In the final scanning
experiment, each subject was shown four levels of motion coherence:
50% coherence, 0% coherence, and the two individually adjusted levels
that yielded around 65% and 85% correct performance (mean coherence
levels: 7.86%, SD: 1.28, and 13.41%, SD: 2.11). These four levels were
chosen to achieve performance variations from 50% accuracy (chance
level) to 100% accuracy in each individual subject. The label ‘upward’
or ‘downward’ motion was assigned randomly to the 0% coherence con-
dition. Subjects were not explicitly informed about the fact that a condi-
tion with no coherent motion was included, but they were instructed to
always give a response. Subjects with a strong decision bias were ex-
cluded when their point of subjective equality for upward and down-
ward motion was shifted left- or rightward to an extent that exceeded
the low coherence condition.

Each experimental run consisted of 8 trials per direction of motion
and coherence, resulting in 64 trials per run lasting 6 min 24 s. Partic-
ipants completed between eight and ten experimental runs, i.e. they
completed a total number of 512 to 640 trials. Trials were presented
in pseudo-randomized order. The order was chosen to make the
trial sequence unpredictable, and intertrial intervals were chosen
to optimize efficiency of the statistical design (Dale, 1999).
Eye movements were monitored in all subjects using a 50 Hz
MRI-compatible video-based system (Sensorimotor Instruments,
Teltow, Germany). After the experiment was finished, subjects
underwent a localizer run to isolate brain regions that respond prefer-
entially to coherent compared to random motion which should include
the motion-selective region MT+/V5 (Braddick et al,, 2001; Rees et al,,
2000).

MRI data acquisition

All imaging was conducted on a 3 Tesla Siemens TIM Trio scanner
(Siemens, Erlangen) equipped with a 12 channel head coil. During the
behavioral calibration of the subject in the scanner, a T1-weighted
image (MPRAGE) was collected as a high-resolution anatomical reference
(TE: 2.52 ms, TR: 1900 ms, flip angle: 9°, FOV: 256 mm, matrix size:
256 %256, slice thickness: 1 mm, 192 slices). T2*-weighted gradient-
echo echo-planar images were collected as functional images for the ex-
perimental runs and the motion localizer (TE: 30 ms, TR: 2000 ms, flip
angle: 90°, FOV: 192 mm, matrix size: 64 x 64, slice thickness: 3 mm,
interslice gap: 0.3 mm, 33 slices, ascending sequence).

Univariate analysis of fMRI data

We applied two lines of data analysis, one with a standard mass-
univariate general linear model (GLM) and one with multivariate clas-
sification. For univariate analyses, functional images were preprocessed
by spatial realignment, slice-timing correction, spatial warping to an av-
erage anatomical subject template using DARTEL (Ashburner, 2007), af-
fine transformation to MNI space and spatial smoothing (Gaussian
kernel with 6 mm FWHM). These steps were performed in the SPM8
framework (http://www.filion.ucl.ac.uk/spm/). After preprocessing,
the BOLD signal of each voxel in each subject was estimated with two
regressors in a general linear model: one baseline regressor for RDM
stimulus presentation and one linear parametric regressor for different
levels of motion coherence. Stimulus onsets and durations were
modeled with a boxcar function convolved with a canonical hemody-
namic response function (HRF). The second regressor yielded a param-
eter estimate that expressed a positive or negative relationship of the
BOLD signal of each voxel with different levels of motion coherence.
All models included an intrinsic temporal high-pass filter of 1/128 Hz
to correct for slow scanner drifts. Six additional movement parameters
were included to explain variance introduced through head motion. Pa-
rameter estimates of each individual's linear parametric regressor were
submitted to a group t-test, yielding brain regions where the BOLD sig-
nal correlated positively or - for negative t-values - negatively with
coherence.

The data from the motion localizer was preprocessed similarly, but
without warping and spatial smoothing. One regressor for coherent
motion and one for random motion plus six additional head move-
ment regressors were entered into a GLM. For each subject, we de-
fined area MT+/V5 based on a combination of anatomical criteria
(Dumoulin et al., 2000), the contrast “coherent motion>random mo-
tion” at p<0.05 uncorrected, and manual voxel selection. For later
comparison to our group results, we took these anatomical masks,
spatially normalized them and combined them to an image of the
sum of all these masks, ranging in values from 1 to the number of sub-
jects. This yielded a relatively large mask of 1268 voxels.
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Multivariate classification analysis I: decoding the stimulation

For multivariate classification, functional images were also pre-
processed by spatial realignment and slice-timing correction, but ex-
cluding warping, transformation to MNI space and spatial smoothing
(these steps were performed only after multivariate classification to
preserve the fine-scale spatial information that contribute to multi-
voxel pattern analysis). After preprocessing different GLMs were
created as above, depending on the conditions of interest. For each
GLM, we modeled only the regressors of interest, i.e. trials without re-
sponse and motion regressors, because in our experience a full model
can lead to reduced classification performance, probably because var-
iance that is important for pattern information is stolen by other
regressors, even if they are largely uncorrelated across trials. To clas-
sify the physical motion direction of the stimulus depending on the
coherence level, eight regressors were created where motion direc-
tions (up and down) were modeled separately for each of the four
levels of motion coherence. In this way, for each experimental run
and each condition of interest a parameter estimate was achieved
that could later be used for classification analyses.

To identify brain regions that not only vary with motion coherence,
but carry information about the direction of motion, a searchlight clas-
sification analysis (Kriegeskorte et al., 2006) was performed on each
participant using a leave-one-run-out cross validation approach
(Haynes et al., 2007) to detect informative local spatial fMRI patterns
across the whole brain. This procedure has previously been explained
in greater detail (Kahnt et al., 2010; Tusche et al., 2010). For classifica-
tion, we used a linear support vector machine in the implementation
of LIBSVM 2.86 (Chang and Lin, 2011) with a cost parameter of c=1.
All voxels surrounding a given voxel within a sphere of 10 mm radius
were included in a searchlight. Parameter estimates of one condition
from voxels within a searchlight served as a pattern vector for this
condition. Pattern vectors for two conditions of interest from all
but one run were used to train a classifier to distinguish between
these two conditions, e.g. upwards vs. downwards motion for high-
coherence stimuli. The classifier was then used to predict the catego-
ries of the patterns from the left-out run. This procedure was repeated
iteratively for each run, yielding a mean cross-validation prediction
accuracy for the searchlight across the whole experiment. The central
voxel of the searchlight was then assigned this cross-validation accu-
racy. The whole process was repeated for each voxel in the brain, gen-
erating a map of local classification accuracies across the whole brain.

Searchlight classification of physical stimulation yielded four accu-
racy maps per subject, each representing the informational content
for the stimulation for each level of motion coherence. After all of
these maps were spatially warped, transformed to MNI space and
spatially smoothed (see above), they were submitted to a group
repeated-measures ANOVA to identify brain regions where the pre-
diction accuracy was significantly different from chance (50% accura-
cy) in at least one of the four conditions. Post-hoc statistical tests
were carried out on peak voxels of each cluster.

Multivariate classification analysis II: decoding the decision

In addition to decoding the motion direction of the stimulus, we
were interested in subjects' choices about motion stimuli. For this pur-
pose we used a very similar approach as above, but this time first creat-
ed eight GLM-regressors, each of which reflected one of both directions
of motion indicated by the subject, i.e. the subject's decision, separately
for all four levels of motion coherence (e.g. perceived motion up vs. per-
ceived motion down at zero coherence). Again a searchlight classifica-
tion analysis was carried out separately for each of the four levels of
motion coherence where we searched for patterns of brain activity
that carried information about the outcome of the choice (up vs.
down). For each subject this resulted in four accuracy maps that were

spatially warped, transformed to MNI space and spatially smoothed,
and submitted to a group repeated-measures ANOVA (see above).

Results
Behavioral and eye-tracking results

Mean reaction times and accuracies across different levels of mo-
tion coherence are displayed in Fig. 1d. As can be seen, the accuracy
values across all subjects were in good agreement with the expected
performance levels. A repeated-measures ANOVA across all four co-
herence levels confirmed that accuracy was modulated by the coher-
ence of the RDM stimulus (F(563)=581.89, p<0.001). Furthermore,
reaction times decreased with motion coherence (F3¢3)=61.76,
p<0.001), although the stimulus was presented for a fixed duration,
there were no speed instructions to the subject (interrogation proto-
col), and subjects were not immediately given a stimulus-response
assignment.

One might be concerned that even with the use of a response-
mapping screen choices and motor responses were not fully separat-
ed, for example because subjects chose more often “up” with the
right than with the left hand. In this scenario, multivariate classifica-
tion analyses could possibly pick up motor response-specific brain
signals that are only seemingly choice-specific. To estimate whether
subjects' left and right button presses could be predicted from their
choices for up and downward motion, we ran a two-tailed binomial
test testing for a correspondence between choices and button
presses for each subject separately. Only one out of 22 subjects
approached significance in responding more often right when the
choice was up than when it was down (54.92% of all valid trials,
p=0.067, all other subjects p>0.221). Thus, subjects rarely, if
ever, chose their button press depending on their choice of motion
direction.

Eye movements were defined by a deviation from fixation that
exceeded 2 dva and that lasted longer than 200 ms, in addition to
manual selection because of occasional noise bursts in the eye-
tracking signal. Due to technical failure only eye movement data
from 14 subjects was available for eye-tracking analysis. We found
only a small fraction of trials with saccades (number of saccades per
subject: 1.17, SD: 1.03). We additionally tested for significant devia-
tions in mean eye position between our conditions of interest. Possi-
bly, small eye movements or deviations from fixation could explain
our pattern of results. We estimated the mean eye position along the
x- and y-axis for each trial separately and averaged these trial esti-
mates according to the motion coherence and the choice of the sub-
ject. We then ran two separate two-way repeated measures ANOVAs
with the factors “coherence” and “choice”, and with the dependent
variable being the deviation along the x- and y-axis, respectively. A
main effect of choice or an interaction of choice and coherence could
provide information that may be picked up by a classifier to predict
choices or changes in choices with level of coherence, respectively.
For the x-axis, we found no significant main effect or interaction (all
F<1). For the y-axis, we found a main effect of coherence (F339)=
3.84, p=0.02), explained by a higher eye position for intermediate
coherence compared to either zero coherence (mean difference:
0.05 dva, T(13y=2.67, p=0.02) or high coherence conditions (mean
difference: 0.08 dva, T(13y=2.46, p=0.03), but importantly no main
effect of choice (F¢;.13y<1) and no interaction of choice and coherence
(F(339)=1.43, p=0.25). This means that any choice-specific results
cannot be explained by differences in eye position.

Univariate fMRI results: motion coherence
Before the choice-decoding, we first investigated the univariate ef-

fect of motion coherence on overall changes in the amplitude of the
BOLD signal to identify brain regions in which levels of activity
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covaried with sensory evidence. Similar analyses have been reported
in previous studies using “standard” sensorimotor choice designs
(Heekeren et al., 2004, 2006; Ho et al., 2009; Kayser et al., 2010a,
2010b; Kovacs et al., 2010; Tosoni et al., 2008). Since we were using
a response-mapping screen that decoupled motor responses from
decision-making we sought to confirm that our experiment was com-
parable to these previous studies. For that reason, we used a more le-
nient statistical threshold in this analysis than in later analyses
(T(21)>4.49, p<0.0001 uncorrected). Regions exhibiting a significant
relationship between BOLD signal amplitude and motion coherence
level are displayed in Fig. 2, red indicating a positive and blue a neg-
ative relationship. All results are reported in Table 1. We identified a
number of regions with a positive relationship between BOLD signal
amplitude and motion coherence, including bilateral angular gyrus,
posterior cingulate cortex, superior frontal sulcus and ventro-medial
prefrontal cortex. Among the brain regions exhibiting a negative rela-
tionship between BOLD signal amplitude and motion coherence were

50 40
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.001 00001 .
B I ositive
I negative

-64 : 22

Fig. 2. Parametric univariate results. Results are indicated where the BOLD signal
varied parametrically with the coherence of the stimuli. Red indicates a positive
parametric response, while blue indicates a negative response. For illustrative pur-
poses, p-values were scaled between 103 and 10~° (uncorrected). Regions with a
positive parametric response include left and right angular gyrus, posterior cingulate
cortex and left superior frontal sulcus. A negative relationship was found in the frontal
eye fields, supplementary eye fields and intraparietal sulcus, as well as anterior cingu-
late cortex, anterior insula, and other regions not shown here, but illustrated in Table 1.
Also early visual cortex and left middle temporal cortex demonstrated a negative para-
metric response.

Table 1

Summary of parametric univariate results, separated for positive and negative para-
metric effects. Coordinates and T-values refer to the voxel with the highest T-value in
each cluster, and the cluster size is defined by the number of significant voxels in
each cluster (p<0.0001 uncorrected).

Region X Y z T-value Cluster size
Positive parametric effect

Left angular/supramarginal gyrus —54 —49 31 730 117
Posterior cingulate cortex —12 —40 34 6.45 76
Ventro-medial prefrontal cortex 6 32 -5 617 15
Right angular/supramarginal gyrus 45 —61 37 5.85 97
Right putamen 18 8§ —8 555 13
Left superior frontal sulcus —-21 29 49 5.49 20
Right middle/inferior temporal gyrus 63 —16 —8 538 18
Left superior parietal lobule —42 —64 52 538 17
Left putamen —-21 5 —8 521 22
Right mid-cingulum 9 —22 46 5.19 11

Negative parametric effect

Supplementary eye field/ACC —6 17 43 9.61 397
Right frontal eye field 33 —1 61 9.58 164
Left anterior insula —-30 20 4 881 90
Right anterior insula 30 23 4 8.78 92
Right intraparietal sulcus 18 —64 58 7.79 155
Left frontal eye field -30 -4 64 7.46 51
Early visual cortex —12 —-91 —11 741 185
Left mid-occipital gyrus —30 —79 22 6.88 42
Left middle frontal gyrus —33 53 13 6.28 24
Left middle temporal gyrus —39 —58 10 6.24 17
Left inferior frontal gyrus —45 2 31 5.77 30
Left intraparietal sulcus —15 —-70 43 541 14
Right thalamus 12 —10 4 538 13
Left inferior parietal lobule —39 —40 43 5.11 10

the frontal eye fields, the supplementary eye fields extending into the
anterior cingulate cortex, the intraparietal sulcus and the anterior
insula. Also early visual cortex showed this relationship, as well as a
small cluster in left middle temporal cortex fully overlapping with
MT+/V5 (see Table 1 for a complete list). No other region identified
in this analysis overlapped with MT+/V5. The negative relationship
between BOLD signal and stimulus strength may reflect increased
top-down attention when the sensory evidence is weak (Ho et al.,
2009; Kayser et al., 2010a, 2010b).

Searchlight fMRI classification results: direction of motion

In the next step, we determined which brain regions carried infor-
mation about the physical direction of motion of the stimulus. For lin-
ear motion, it has previously been demonstrated that motion
directions could successfully be decoded from patterns of brain activ-
ity throughout early visual cortex and MT+/V5 (Kamitani and Tong,
2006; Serences and Boynton, 2007a, 2007b). However, these studies
had used long blocks of stimulation, so it was not clear whether pat-
terns of brain activity contained sufficient information to read out
motion direction from patterns of brain activity using both low coher-
ence levels and an event-related design with stimulus durations as
shortas 1.5 s.

A searchlight classification analysis was performed on each sub-
ject and each level of motion coherence to detect patterns of BOLD ac-
tivity that carried information about upward vs. downward motion.
As mentioned above, four classification brain volumes were available
per subject (one for each level of stimulus coherence) that all were
submitted to a group repeated-measures ANOVA. We looked for re-
gions where at least one of the motion coherence levels was signifi-
cantly different from chance (F463)>8.83, p<0.00001 uncorrected,
k=30). This criterion was satisfied only in early visual cortex
(Fig. 3), but did not extend to area MT+/V5. In early visual cortex,
decoding accuracies increased across different levels of motion coher-
ence (F(363)=38.84, p<0.0001), while random motion led to chance



1398 M.N. Hebart et al. / Neurolmage 63 (2012) 1393-1403

F(4,63) p

.001
.0001

9 .00001

.000001
12

Bdm i s
B2« s i e s s e e e
BOS « s s v o v bs s v s b as e R e s e
BB v v e

BB v v

B4 r v

Accuracy (in Percent)

52 4

50

48

zero low medium high
Coherence

Fig. 3. Decoding the direction of motion. Using a searchlight classification analysis sep-
arately for each level of motion coherence, the motion direction of stimuli could be
decoded only from early visual cortex. For illustrative purposes results were scaled be-
tween p<10~* (uncorrected) and the peak response. Decoding is strongest for the
highest level of motion coherence and absent at the lowest level.
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decoding (post-hoc t-test, T(31y=1.02, p>0.05). In addition, we de-
termined region MT+/V5 on the basis of a motion localizer and ana-
tomical criteria (Dumoulin et al., 2000). We then performed a
multivoxel pattern analysis only in this region of interest. We did
find above-chance classification for left and right MT+/V5, but only
at a lenient statistical criterion and only at the highest level of motion
coherence (T(21)>1.72, p<0.05). Please note that even our highest
level of motion coherence will have yielded less discriminative stim-
ulus information than in previous fMRI-decoding studies on motion
coherence decoding (Kamitani and Tong, 2006). There was no overlap
of results in early visual cortex with the MT+/V5 mask.

Searchlight fMRI classification results: perceptual choice

In a next step we identified brain regions carrying information
about subjects’ up vs. down choices, separately for each level of mo-
tion coherence. This searchlight analysis revealed which brain regions
predicted perceptual choices, and how the choice-selective signals
depended on the strength of sensory evidence. Please note that the
motion direction of the physical stimulus and subjects’ perceptual
choices are more strongly correlated for higher than for lower coher-
ence levels (higher accuracy, see Fig. 1b). Hence, lower coherence
levels are better suited to identify neuronal signals that specifically
encode the subjects' choices, rather than the stimulus (Britten et al.,
1996).

Again, a searchlight analysis was performed on each subject, but
this time we classified not motion directions, but the choices made
by the subjects about the perceived motion direction, depending on
the motion coherence. We looked for brain regions where at least
one of the four conditions showed significantly above chance classifi-
cation accuracies (F4,63)>8.83, p<0.00001 uncorrected, k= 30).

Fig. 4 shows that two brain regions were identified using this pro-
cedure, namely early visual cortex and left inferior parietal cortex locat-
ed in posterior parietal cortex around the angular gyrus. Early visual
cortex showed an increase in decoding accuracies across different
levels of motion coherence (F363)=2.97, p<0.05). This was expected,
given the strong correlation between motion directions and choices at
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Fig. 4. Choice-selective signals in early visual and posterior parietal cortex. Two brain regions were identified that carried information about the subject's choice (up vs. down). Early
visual cortex displayed an increase in decoding accuracies across levels of motion coherence. Even at the lowest level of coherence where the stimulus carried no predictive infor-
mation, decisions could be decoded above chance. In left inferior parietal cortex decoding accuracies were highest for zero coherence and decreased with higher levels of motion

coherence.
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the highest level of motion coherence. However, even for the lowest
level of motion coherence (where no net motion signal was presented
to the subject), patterns of activity in visual cortex predicted decisions
significantly above chance (post-hoc t-test, T(»q)=3.64, p<0.001).
Decoding accuracies for decisions from an MT+/V5 region of interest
showed a significant effect only at a lenient statistical criterion
(T(21y>1.72, p<0.05) and only for the highest level of motion coher-
ence in left MT+/V5. Overlap with the MT+/V5 mask was 1.66% of
voxels in the early visual cortex cluster, with a maximum of six sub-
jects showing overlap in three of these voxels.

The results from the cluster in left inferior parietal cortex showed
the reverse relationship: Here decoding accuracies were highest for
the ‘zero coherence’ condition and decreased steadily for higher levels
of motion coherence (F363)y=6.99, p<0.001). At the highest level of
motion coherence they were not significant (post-hoc t-test, T21)=
0.89, p>0.05). This result shows that this posterior parietal region car-
ried more predictive information about the decision when less sensory
information was available to the observer. Overlap with the MT+/V5
mask was overall 8.83% of the cluster, and a maximum of three subjects
showed overlap in two of those voxels.

To test whether the results could be explained by a larger overall
BOLD response to one choice than another (e.g. a larger BOLD response
to “up” than “down” choices), we carried out another mass-univariate
GLM analysis as above, but this time modeling choices separately, effec-
tively leading to 8 regressors (2 choices x 4 coherence levels). Using the
same statistical threshold as for the multivariate searchlight analyses
(p<0.00001 uncorrected, k=30), we found no discriminatory clusters
that could separate up and down choices, demonstrating that the effects
found in the classification analysis are not explained by overall changes
in the BOLD signal amplitude.

Searchlight fMRI classification results: rule representation

Only at the time when a decision has been made and the response-
mapping screen is shown, the subject can apply a response-mapping
rule and execute a motor command to indicate their decision. In
that way, our design allowed us to show choice-specific brain signals
independent of the motor plan. This leaves open the question how
the perceptual choice is translated into a motor response. The repre-
sentation of the response-mapping rule is necessary to carry out
this transformation of choice to motor response (Bode and Haynes,
2009).

To investigate this representation, we ran another searchlight clas-
sification analysis with the two different possible response-mapping
screens (see Fig. 1¢) as input to the classifier. The response-mapping
screen should drive sensory responses to the stimuli on the screen in
visual cortex (i.e. arrow up left - arrow down right, or vice versa)
and induce a more abstract representation of the response-mapping
rule in some higher-order brain regions (if up - press left, if down -
press right, and vice versa). At the group level, a t-test was executed
to detect brain regions that encode the response-mapping screen
(T(21y>4.49, p<0.0001 uncorrected). The results are shown in Fig. 5.
Two sets of brain regions were found, one in bilateral early visual cor-
tex (left: [—18, —97, —8]; right: [24, —97, 1]) likely reflecting the
two different stimulus configurations, and another in bilateral dorso-
lateral prefrontal cortex (left: [— 36, 32, 40]; right: [39, 35, 37]), likely
reflecting abstract representations of the two alternative response-
mapping rules.

Discussion

In the vast majority of previous perceptual decision-making stud-
ies, decision processes had not been assessed independent of motor
plans (Gold and Shadlen, 2007; Heekeren et al, 2008). These studies
have used movement-selective neuronal signals in sensorimotor and
motor brain areas as a proxy for tracking neuronal decision dynamics

.001 .00001

o I

Fig. 5. Decoding of the response-mapping screen. Information about the response-
mapping screen was found in early visual and dorsolateral prefrontal cortex. For illus-
trative purposes, p-values were scaled between 10~> and 10~ (uncorrected).

(Cisek and Kalaska, 2005; Donner et al., 2009; Horwitz and Newsome,
1999; Roitman and Shadlen, 2002; Salinas and Romo, 1998; Shadlen
and Newsome, 2001; Tosoni et al., 2008). Their results have been cen-
tral in linking neurophysiology to accumulator models of perceptual
decisions (Ratcliff, 1978; Usher and McClelland, 2001). It has even
been suggested that perceptual decision-making may be identical to
motor intentions (O'Regan and Noé&, 2001; Shadlen et al., 2008). Nev-
ertheless, we can obviously make perceptual choices in a more ab-
stract fashion, without directly transforming them into action plans.

Here, we used fMRI to determine where and how such abstract
perceptual choices are encoded in the human brain when the decision
process is decoupled from motor planning. We measured choice-
selective brain signals across the human brain during a perceptual
decision-making task in which choices were decoupled from motor
plans. We found that both early visual and inferior parietal cortex
carry information about the subjects' perceptual choices. The strength
of this information, however, depended on the level of sensory evi-
dence. Early visual cortex encoded the subject's decision even when
there was no coherent motion, but carried more information when co-
herence was higher. In contrast, a region in left inferior parietal cortex
carried most information about the choice of the subject at zero mo-
tion coherence, with a gradual decrease of information for higher mo-
tion coherence.

Our results indicate that both visual and parietal cortex are specif-
ically involved in perceptual decision-making independent of motor
plans. Interestingly, the amount of choice-selective information in
both areas strongly depended on whether the sensory evidence was
weak or strong, in an opposite manner. We found no single brain
area in which the choice was encoded in a categorical, binary fashion
throughout all visibility levels, i.e. independent of the amount of sen-
sory evidence. Obviously, such a binary decision signal must arise
somewhere in the nervous system when perceptual choices are di-
rectly mapped onto motor responses, because these motor responses
are - by design - binary. By contrast, our present results suggest that
when perceptual choices are not directly mapped onto motor re-
sponses, the brain may encode these abstract choices not in a binary
manner, but rather as a graded variable, along with the associated
certainty (Kiani and Shadlen, 2009).

Although the cortical signals we found were choice-selective, they
do not necessarily directly contribute to the decision itself. For example,
they may reflect selective feedback signals evolving as a consequence,
rather than as the cause, of the decision (Nienborg and Cumming,
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2009). While the exact nature of the involvement of parietal and visual
cortex in this decision process awaits further study, importantly, the
signals we identified in both regions cannot be explained by unspecific
overall changes in activity during decision-making, because our analysis
assessed the information about specific choices encoded in selective
patterns of brain activity.

BOLD response amplitude increases with task demands

Previous fMRI studies of perceptual decision-making have found a
number of brain regions in which the BOLD signal correlated with the
decision of the subject (Banko et al., 2011; Heekeren et al., 2004,
2006; Ho et al.,, 2009; Kayser et al., 2010a, 2010b; Kovacs et al.,
2010; Liu and Pleskac, 2011; Noppeney et al., 2010; Tosoni et al.,
2008; Woolgar et al., 2011). In line with this work we found that de-
creases in the strength of sensory evidence were paralleled by in-
creases in fMRI response amplitudes in a wide network of cortical
regions outside of visual cortex. These regions include three areas
known to be involved in “top-down” control of visual attention and
visuo-motor processing (Corbetta and Shulman, 2002; Pessoa et al.,
2003): the frontal eye fields, the supplementary eye fields, and the
intraparietal sulcus. Also the anterior insula and the anterior cingu-
late cortex were found which have been related to categorization un-
certainty (Grinband et al., 2006) and cognitive control (Ridderinkhof
et al., 2004). Thus, the involvement of these brain regions in percep-
tual decision-making extends to situations in which stimulus and
motor response are decoupled. This finding could indicate that sub-
jects exert more top-down attentional control during perceptual
decision-making in the face of weak sensory evidence, perhaps as a
consequence of noticing difficulty of the decision (Philiastides and
Sajda, 2006; but see Banko et al., 2011). However, they could also re-
flect post-decisional processing, for example an increase in attention-
al control for the following trial (Botvinick et al., 2004; Miller and
Cohen, 2001).

Choice-selective signals in early visual cortex

While our findings of overall BOLD signal changes are in line with
those reported previously, such overall signal changes are difficult to
interpret unambiguously, because they are not predictive of specific
choices. In the present study we overcame this problem by directly
characterizing choice-selective fMRI responses using multivariate
decoding. One previous fMRI study used searchlight decoding to in-
vestigate changes in categorical representations of visual stimuli in
human cortex during perceptual learning (Li et al., 2009). However,
this study did not attempt to decouple the representation of per-
ceptual choices from stimulus representations in the same task. For
this, the most informative condition is zero stimulus strength
(e.g., motion coherence), where choices and stimuli are uncorrelated
and can thus be fully distinguished (Britten et al., 1996). Indeed, we
observed that at zero motion coherence the outcome of the decision
could be decoded from patterns of brain activity in early visual cortex.

Why was it possible to predict subjects' choices from patterns of
brain activity as early as visual cortex, even when the stimulus
contained no net motion? The choice-selective responses in early vi-
sual cortex may be driven by “bottom-up” (stimulus-dependent) fac-
tors, “top-down” (state-dependent) factors, or their interaction. It is
possible that trial-by-trial fluctuations in the stochastic visual stimu-
lus caused spurious direction-selective stimulus responses in visual
cortex which subjects used for their choices in the “zero coherence”
conditions (Britten et al., 1996). Even when no such bias exists in
the physical stimulus, trial-by-trial fluctuations in spontaneous neu-
ral activity in sensory cortex may contribute to the contents of per-
ception (Hesselmann et al., 2008a, 2008b; Wyart and Tallon-Baudry,
2009). Likewise, small and brief local changes in the salience of
one motion direction - impossible to prevent in random dot motion

stimuli - could lead to a selective neuronal response in visual cortex
biasing perception to one direction of motion (Treue, 2003). In partic-
ular, it has been shown that choice-selective neuronal responses in
visual cortex during perceptual choice tasks like ours may be caused
by “top-down” signals selectively targeting those neurons that en-
code the evidence supporting the choice, and which arise during -
or even after - decision formation (Nienborg and Cumming, 2009).
It is, however, unknown how signals in V1 could participate in motion
processing or in forming perceptual judgments.

We found no evidence for a similar effect in area MT+/V5 which is
well known for processing motion directions (Born and Bradley,
2005; Zeki, 1974). This negative result is consistent with the fact
that previous fMRI decoding studies found only small direction-
selective effects in this region, even when using stimuli of maximum
motion coherence and block designs (Kamitani and Tong, 2006;
Serences and Boynton, 2007a), while our task was limited to much
weaker stimuli and employed a less efficient event-related design.
Under these circumstances it is possible that our decoding approach
is not well suited for the size and structure of this brain region
(Kamitani and Tong, 2006). A previous event-related fMRI study
reported evidence for direction-selective responses even at zero co-
herence in MT+/V5 (Serences and Boynton, 2007b). However, in
this study longer viewing durations and orthogonal motion directions
were used which may yield different results than the short viewing
durations and collinear motion directions typically used in perceptual
decision-making studies. In particular, orthogonal motion directions
maximize the possibility that a classifier could pick up motion streaks
(Apthorp, 2010, pp. 140-144). These perceived oriented lines along
the path of motion could be classified when motion directions are or-
thogonal, but not when they are collinear, because in that case streaks
have the same orientation independent of the direction of motion.
While this is less of a problem for the zero coherence condition, view-
ing durations of 12 s and the expectation of no change in visual stim-
ulation could lead to strong choice-specific top-down signals in area
MT+/V5 (Kayser et al., 2010a, 2010b) that could possibly be picked
up by a classifier.

Choice-selective signals in posterior parietal cortex

In addition to visual cortical areas a region in left posterior parietal
association cortex carried information about the decision. This region
was located around the angular gyrus and does not belong to the typ-
ical sensorimotor association regions reported in studies of percep-
tual decision-making (Tosoni et al., 2008) which lie more medial
and superior, including eye-movement and reach-selective regions
around the intraparietal sulcus (Culham et al., 2006; Silver and
Kastner, 2009; Swisher et al., 2007). Instead, our results point to-
wards a role of this region in decision-making when decisions need
to be encoded in an abstract form.

The posterior parietal region we identified was maximally predic-
tive of the subjects' decision at zero motion coherence, with a gradual
decrease of decoding accuracies for higher levels of motion coher-
ence. Is it possible that subjects accumulate sensory information
from visual cortex only when the evidence is low? In this scenario, ac-
cumulation would not be necessary for strong evidence, so that sub-
jects could read out instantaneous sensory responses (Uchida et al.,
2006), in our case from visual cortex. However, such a pattern of re-
sults is not consistent with previous work, and it would not be
explained from the different functions relating spike rates to accumu-
lation of sensory evidence at different levels stimulus visibility. For
fixed stimulus durations (as in our case), the choice-selective brain
activity should increase with motion coherence when integrated
across the whole stimulus interval (Heekeren et al., 2004; Mazurek
et al,, 2003; Shadlen and Newsome, 2001). This result suggests that
different or additional processes contributed to the outcome of the
decision in the face of low sensory evidence.
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Another possibility is that the response reflects the subjects’ crite-
rion which would dominate the outcome of decisions when evidence
is weak. This criterion could be governed by a subject's internal “hy-
pothesis” about the direction of motion (Friston, 2005), but also a
passively fluctuating bias signal which is most informative when the
motion coherence is high, but which influences the decision when
sensory evidence is low (Shadlen and Newsome, 2001). Either way,
the results are in line with the notion that decisions are governed
by different signals when making decisions at low and high sensory
evidence. We do not exclude the possibility that the signal in other
high-level regions followed the decision of the subject, but that our
method was not sensitive enough to pick up these effects. What our
results do show is that this parietal region is the one most strongly in-
volved in decisions at low levels of sensory evidence.

Relationship between mean BOLD signal effects and searchlight
decoding results

It is interesting to note that we did not find any brain region
where the BOLD signal increased together with the amount of infor-
mation available to the classifier. If any overlap was present, the
BOLD signal went in the opposite direction of the decoding accuracies
when motion coherence was varied. This result suggests that the in-
crease in mean BOLD signal in a brain region can be decoupled from
the spatial patterns encoding specific neural responses. Similar coun-
terintuitive findings have been reported previously. For example, it
has been shown that the BOLD signal in area MT+/V5 which is well
known to encode motion speed and direction (Born and Bradley,
2005; Zeki, 1974) can increase with decreasing motion coherence
(Kayser et al., 2010a, 2010b), and that this effect is related to increas-
ing top-down attention with decreasing motion coherences (Kayser
et al, 2010b). We replicated this finding for area MT+/V5 and
extended it to early visual cortex. Probably, this top-down effect is
stronger than the bottom-up increase in neural activity through
higher motion coherence, leading to overall decreases in BOLD signal
with increasing motion coherence. Similarly, many of the mean BOLD
signal variations reported in the present study may be related to such
attentional or performance monitoring effects (Botvinick et al., 2004;
Corbetta and Shulman, 2002; Miller and Cohen, 2001; Pessoa et al.,
2003; Ridderinkhof et al., 2004). Pattern classifiers can pick up weak
choice-specific signals that may not become apparent in the mean
BOLD signal response (Li et al., 2009) and which may co-occur to-
gether with such top-down signals.

In a similar vein, the BOLD responses in the parietal region overlap
with a brain region that typically deactivates during the task (Singh
and Fawcett, 2008). In our case, this brain region is deactivated less
with increasing motion coherence. This could mean one of three
things: First, activity in this brain region is driven only by the difficulty
of the task. In that case deactivation is stronger with lower motion co-
herences, because the task becomes more difficult and all resting-state
activity needs to be suppressed to focus on the task. Second, there is a
task-negative response and on top of that an increase in activity which
overlaps with the overall task-specific deactivation and which in-
creases with motion coherence. Clearly, this region of the posterior pa-
rietal cortex serves other processes than only to deactivate during the
task (Dehaene et al., 1999; Price, 2000), so this scenario is a valid pos-
sibility. Third, the brain could in principle prepare several responses in
another brain region, but only execute them as soon as sufficient in-
formation has been accumulated. Selective deactivation in posterior
parietal cortex could in that case prevent overly fast responses in the
brain regions encoding the response. While we cannot directly dis-
criminate between these three scenarios, our results demonstrate
choice-specific brain signals from the posterior parietal cortex and in
that way argue in favor of the second alternative, i.e. separate but
overlapping responses to different aspects of the task. Taken together,
a negative BOLD response alone does not seem to justify the exclusion

of brain regions as candidates for decision-making regions (Ho et al.,
2009; Kayser et al., 2010a, 2010b; Tosoni et al., 2008).

Choice selectivity vs. motor planning

Given our design of decorrelating perceptual choice (“up” vs.
“down”) and motor responses (left- vs. right-hand button press) on a
trial-by-trial basis, we are confident that cortical responses specifically
encoding perceptual choices found in our analysis are not confounded
by cortical responses encoding motor plans. However, it is possible
that our present design missed some choice-selective responses that
co-existed with response-selective signals in a given brain region. Neu-
ronal signals that carry information both about the perceptual choice
and the motor plan have been found to co-exist in macaque LIP in the
case of saccadic responses (Bennur and Gold, 2011). In our present de-
sign, the BOLD responses to both signals will overlap in time. Thus, in
such regions it may be difficult to pull apart specific patterns of brain ac-
tivity selective for the choice or the motor response, possibly yielding a
null result. In principle, it would be possible to fully separate these sig-
nals by longer and jittered delays between stimulus, response-mapping
screen, and motor response. However, we chose not to use such an
approach, because this would have strongly reduced the efficiency of
our design. In addition, even delays of a few seconds before responding
could have lead to effector-independent re-coding of information in
memory-related brain regions, which would be difficult to relate to
decision-making signals without such re-coding. Other studies using
time jitter thus may detect additional brain regions encoding perceptual
choices, possibly including the human homologue of area LIP (Bennur
and Gold, 2011) which should lie anterior of the parietal region identi-
fied in the present study.

The present design may not eliminate motor planning altogether.
It is possible that subjects prepared both left- and right-hand re-
sponses during the decision formation, irrespective of the choice,
and then only selected the appropriate response after the presentation
of the response-mapping screen, effectively suppressing motor prepa-
ration of one while maintaining motor preparation of the other hand.
While subjects may have carried out such motor planning, the selec-
tive motor preparation signal should be reflected in the motor re-
sponse component, because it predicts the motor response of the
subject. Given that we effectively decorrelated motor responses and
perceptual choices, our results thus cannot be explained by motor
preparation, even if the subject chose to prepare all possible motor re-
sponses. However, our design did not prevent subjects to carry out
such motor preparation. This process could, however, not be captured
with the present design, because motor preparation and execution are
impossible to separate in our task. Taken together, our analyses pre-
clude any signals to be picked up that were confounded by motor
preparation.

Previous studies on the encoding of abstract choices

Previous monkey electrophysiology studies have demonstrated
signals reflecting abstract choices in the superior colliculus, supple-
mentary eye field (Horwitz et al., 2004), and the lateral intraparietal
area (Bennur and Gold, 2011). Although choices can accurately be
predicted from neuronal responses in the frontal eye field (Kim and
Shadlen, 1999), this region only seems to be involved in the decision
process when a motor response (saccade) is planned concomitantly
(Gold and Shadlen, 2000, 2003). In humans, it is still a matter of de-
bate how abstract decisions are encoded. One approach has been to
detect brain signals that are invariant to the motor effector used to
carry out the task, and while some studies reported brain regions
responding irrespective of the response modality (Heekeren et al.,
2006; Ho et al., 2009; Liu and Pleskac, 2011), others could not find
modality-independent evidence (Tosoni et al., 2008). More specifical-
ly, Heekeren et al. (2006) found the left superior frontal sulcus to
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respond irrespective of motor effector, Ho et al. (2009) found signa-
tures of evidence accumulation in the right anterior insula also
irrespective of motor effector, and Liu and Pleskac (2011) found the
posterior intraparietal sulcus, precentral sulcus and anterior insula
to respond both independent of motor effector and of foreknowledge
of which effector to use. While we also detected those regions with
the same direction of BOLD signal modulation, we found no evidence
for their involvement in representing the particular choice of sub-
jects. These conflicting findings could thus be resolved if one assumes
that those signals were in fact not encoding the choice of the subject,
but reflected rather unspecific albeit possibly decision-making related
changes in the overall level of brain activity with sensory evidence.

Summary

Our results show how perceptual choices are encoded in the
human brain when motor planning can be performed only after accu-
mulation of sensory evidence. While many brain regions exhibited
strong correlations between BOLD signal response amplitude and sen-
sory evidence, we showed that these responses are not sufficient to
qualify as selective for perceptual choice, a hallmark for “decision-
related” activity in single-cell recording studies (Gold and Shadlen,
2007). By classifying perceptual choices independent of motor plans,
we showed that both early and left posterior parietal cortex contribute
to the perceptual decision, albeit to different degrees depending on
sensory evidence: Visual cortex encoded choices already when no dis-
criminatory information was present. With increasing motion coher-
ence information in early visual cortex increased, while it decreased
in posterior parietal cortex. When choices are encoded in an abstract
format, dorsolateral prefrontal cortex may be involved in mapping
this information to specific motor responses (Sakai and Passingham,
2006). To conclude, our results directly link patterns of brain activity
to the representation of abstract perceptual choices in the human
brain.
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