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Perceptual confidence refers to the degree to which we believe in
the accuracy of our percepts. Signal detection theory suggests that
perceptual confidence is computed from an internal “decision vari-
able,” which reflects the amount of available information in favor of
one or another perceptual interpretation of the sensory input. The
neural processes underlying these computations have, however, re-
mained elusive. Here, we used fMRI and multivariate decoding tech-
niques to identify regions of the human brain that encode this
decision variable and confidence during a visual motion discrimin-
ation task. We used observers’ binary perceptual choices and confi-
dence ratings to reconstruct the internal decision variable that
governed the subjects’ behavior. A number of areas in prefrontal and
posterior parietal association cortex encoded this decision variable,
and activity in the ventral striatum reflected the degree of perceptual
confidence. Using a multivariate connectivity analysis, we demon-
strate that patterns of brain activity in the right ventrolateral prefront-
al cortex reflecting the decision variable were linked to brain signals
in the ventral striatum reflecting confidence. Our results suggest that
the representation of perceptual confidence in the ventral striatum is
derived from a transformation of the continuous decision variable
encoded in the cerebral cortex.

Keywords: confidence, decision-making, fMRI, multivariate pattern analysis,
signal detection theory

Introduction

Human observers are remarkably good at estimating the accur-
acy of their perceptual judgments, an ability known as percep-
tual confidence. Our confidence often closely corresponds to
the accuracy of categorical perceptual choices (Peirce and
Jastrow 1884; Vickers 1979; Baranski and Petrusic 1998), sug-
gesting a close link between the processes underlying confi-
dence and perceptual decision-making (Gold and Shadlen
2007; Heekeren et al. 2008). Despite this connection, surpris-
ingly little is known about the neural mechanisms subserving
perceptual confidence judgments (Kepecs et al. 2008; Kiani
and Shadlen 2009; Fleming et al. 2012) and in particular how
they relate to mechanisms of perceptual decision-making.

Signal detection theory and related accounts (Green and
Swets 1966; Macmillan and Creelman 2005) postulate that both
perceptual choices and perceptual confidence are based on a
continuous decision variable (DV). The DV is typically defined

as the amount of available information in favor of one percep-
tual interpretation of a stimulus and is based on the (immediate
or accumulated) sensory evidence available to the observer.
(Fig. 1; Green and Swets 1966; Macmillan and Creelman 2005;
Gold and Shadlen 2007). Signal detection theory is agnostic to
the temporal evolution of this variable. Observers make a cat-
egorical choice (e.g., “motion up” vs. “motion down”) by com-
paring the DV against a criterion (Fig. 1B), and they generate
their choice-independent confidence based on the absolute
distance of the DV to this criterion (Fig. 1A). In turn, the DV
could alternatively be described as a signed version of confi-
dence (Fig. 1D). In that way, signal detection theory offers a
direct mathematical mapping of the DV and confidence
(Fig. 1D). This relationship suggests that human observers gen-
erate confidence by simply rectifying the DV (Fig. 1C).

Recent evidence from animal electrophysiology supports
the idea that confidence is closely linked to the DV, by show-
ing that single unit activity in macaque lateral intraparietal
area predicted both the choice of the monkey and whether it
was going to opt-out on a difficult choice (Kiani and Shadlen
2009). However, these responses were coupled to the specific
perceptual decision (e.g., “motion up”), leaving open the
question of whether the monkey also computed a more
general, choice-independent perceptual confidence signal.
Such a signal has been reported in rat orbitofrontal cortex
(Kepecs et al. 2008), and it has been suggested that the stri-
atum of macaques carries a similar, choice-independent re-
presentation of confidence (Ding and Gold 2012). These two
types of decision-related neuronal signals—one reflecting the
DV and the other choice-independent confidence—have not
yet been measured simultaneously, and it is unknown
whether and how they are related to each other in the human
brain.

The aim of the present study was to search for representa-
tions of the continuous DV and of perceptual confidence
throughout the human brain and test whether these two
signals are related. To this end, we used fMRI combined with
multivariate “searchlight decoding” (Kriegeskorte et al. 2006;
Haynes et al. 2007). To link these two signals, we used a multi-
variate connectivity approach, exploiting the interdependence
between patterns of activity in several brain regions. This ap-
proach may shed light on the question how brain signals re-
flecting the DV in one region can be converted into brain
signals reflecting confidence in another region.
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Materials and Methods

Participants
Nineteen young and neurologically healthy subjects took part in the
study and were compensated with 7 € per hour for behavioral pre-tests

and with 10 € per hour for the scanning experiment. One participant
was subsequently excluded due to excessive head motion, leaving 18
subjects (6 female, 1 left-handed, mean age: 26.4 years, SD: 3.4). All
subjects provided informed consent for participation. The study was
approved by the local ethics committee of the Humboldt University in
Berlin and conducted in accordance with the Declaration of Helsinki.

Procedure
The task of the subject was to observe a random dot motion (RDM)
stimulus (Braddick 1974) and then perform two consecutive re-
sponses: (1) a binary perceptual judgment of the dominant direction of
motion of the stimulus (“motion up” or “motion down”) and (2) a
rating of confidence of the judgment on a continuous scale (Fig. 2A).
In the main experiment, the motion coherence of the RDM stimulus
was kept fixed to the 75% threshold of each subject that had been esti-
mated in previous practice sessions (see below). A trial began by a fix-
ation period of 2, 4, or 6 s (counterbalanced within each experimental
run across motion direction and stimulus-response-mapping screen).
Within that period, 0.5 s before the onset of the RDM stimulus, the
central fixation cross (0.25 dva) turned yellow for 0.2 s to prepare the
subject of the upcoming presentation of the RDM. The RDM stimulus
was presented for 1 s, followed by fixation of an otherwise blank
screen for 1 s. Then, the stimulus-response-mapping screen was
shown for 1.5 s, during which the subject could indicate the perceived
direction of motion by a button press corresponding to the chosen
stimulus direction indicated by the response-mapping screen (see
below). This was followed by another 0.5 s of fixation and the confi-
dence screen for 3 s during which the subject could indicate their con-
fidence by moving a white dot with a trackball to the part of the
confidence bar corresponding to their confidence. Each experimental
run was divided into 2 longer blocks of 36 trials spaced by 30-s breaks
during which the subject was presented a countdown and was in-
structed to relax the mind and continue fixating. In the MRI scanner,
each subject participated in 5 experimental runs of 72 trials each. In
total, the experiment lasted about 64 min.

Stimuli
All stimuli were created with Matlab (Mathworks) and presented using
the Cogent toolbox (http://www.vislab.ucl.ac.uk/Cogent). Stimuli
were all shown on a black background. The RDM stimulus was created
in a square region of 10 × 10 dva, but only the region within a circular
annulus was visible (outer radius: 5 dva, inner radius: 0.85 dva). The
stimulus consisted of 500 dots (5 dots/dva2) that each moved at a
speed of 2.5 dva/s and had a diameter of 5.5 arcmin. Dots were sepa-
rated in signal and noise dots. Signal dots all moved in the same direc-
tion (up or down) whereas noise dots were assigned equally spaced
directions of motion including the target motion directions (Fig. 2A,
top left). We introduced several steps to make sure that subjects had to
integrate motion information across space and time, as opposed to
tracking only a small set of dots across a few frames. First, dots were
placed at random positions on the square region but constrained in a
way that minimized the presence of clusters of dots moving in the
same direction at stimulus onset (the first 4 frames were discarded to
remove any visible pattern emerging from this step). Second, each dot
was assigned a limited lifetime of 200 ms, and dots exceeding this time
were subsequently placed at a random location in the RDM stimulus.
For the first lifetime cycle, dot durations were set to random times
between 0 and 200 ms. Finally, dots leaving the square region were
redrawn on the opposite side, and dots leaving the annulus were faded
out to prevent sharp gradients at the borders.

In the scanner, stimuli were back-projected on a translucent screen
(display area: 24.5 × 18.5 cm) in the rear of the scanner that was
viewed at an approximate distance of 60 cm through a surface mirror
mounted on the head coil. Subjects responded with their right hand
using an MR-compatible trackball (Current Designs. Inc.) by pressing
the left button with the thumb, the right button with the middle finger,
and navigating the trackball with the index finger. In order to experi-
mentally separate motor-related and choice-related brain signals, we
used a central response-mapping cue (circle with 0.3 dva diameter)
that cued subjects which button to press for which answer (Haynes

Figure 1. (A) The representational model underlying signal detection theory. The
internal DV defines the x-axis and reflects the amount of sensory evidence in favor of
one choice. The probability density functions are distributions of DV across repeated
presentations of either “motion up” or “motion down” stimuli. The DV for the ith choice
is denoted by di and the criterion of the subject by the constant c. Confidence reflects
the distance of di to c. (B) The DV is transformed into binary choices using a step
function, with the step located at the criterion. Please note that the assignment of the
sign to the direction of choice is arbitrary and can be used interchangeably. (C) The
relationship of confidence and the DV can be described by a modulus function:
Confidence is an unsigned variable and reflects the absolute value of the difference
between the DV and the criterion. (D) Equations describing the relationship between
DV (A), choice (B), and confidence (C). Please note that c can be treated as a
constant.
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et al. 2007; Bennur and Gold 2011; Hebart et al. 2012). The response-
mapping rules were as follows: if the choice was “upward,” a blue
response-mapping cue indicated a left button press, and an orange
response-mapping cue indicated a right button press (and vice versa
for “downward” choices). Subjects were instructed to respond even
when they were very unsure.

For the confidence judgment, a confidence scale was created that
consisted of a gray bar that was wrapped around a virtual circle of 2
dva radius and that increased linearly in width from 0 to 0.7 dva
(Kahnt et al. 2011). This formed a continuous scale for judging the con-
fidence. The orientation and direction of the bar was changed random-
ly from trial to trial to avoid low-level stimulus confounds. Subjects
were instructed that the scale ranged from “very sure about the direc-
tion of motion” to “no idea at all,” and that the center of the scale

indicated the border between rather sure and rather unsure. Further-
more, subjects were instructed during training that they should try not
to restrict their judgments to only a small portion of the scale, unless
their confidence really did not fluctuate. This instruction was given to
improve the discriminatory power of their judgment between trials that
may be masked by inaccuracy in pointing responses using the track-
ball. Please note that this instruction does not change the “relative”
confidence ratings and our procedure separated different levels of con-
fidence using percentiles (see below). When subjects noticed that they
had made a response-mapping error, they were instructed to withhold
a confidence judgment. We wanted to prevent low confidence judg-
ments to be confounded by errors in response mapping (Daniel and
Pollmann 2012). To reduce the effect of the thickness of the confidence
bar on confidence response difficulty, subjects were told that the

Figure 2. Experimental design and behavioral results. (A) Each subject was presented an RDM pattern of which an individually calibrated percentage of dots moved either upward
or downward whereas all other dots moved in random directions. The subject had to indicate the dominant motion direction of the dots. For the motor response, a
response-mapping screen was introduced to decouple motor-related brain signals from perceptual choices. Finally, subjects used a trackball to indicate the confidence in their choice
on a continuous scale. (B) Behavioral accuracy, separated for both choices. Error bars denote the standard error of the difference of the mean. (C) Accuracy as a function of
confidence, using a sliding average with a window width of 5% of all trials. Dashed lines represent the behavioral accuracy for each of the 3 levels of confidence used in later
analyses. The shaded area denotes the 95% confidence interval.
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mouse did not have to hit the confidence bar but would only have to
be close to it.

Practice Sessions Prior to the fMRI Experiment
Each subject practiced the task in two separate psychophysics sessions
prior to scanning. Here, subjects viewed stimuli on a 19-inch CRT
monitor at a distance of 50 cm, with sizes and speeds of stimuli
matched in dva to stimulation in the scanner. In the first session, each
subject was familiarized with the stimulus-response-mapping screens
and the trackball, followed by an adaptive staircase procedure (QUEST,
Watson and Pelli 1983) of 150 trials to find the motion coherence at
which the subject performed 75% correct. The staircase procedure was
also used to familiarize the subject with the level of motion coherence
that would be shown in the scanner. In the second session, the QUEST
procedure was repeated with 96 trials to account for between-session
learning effects, followed by 3 runs of the actual experiment where the
stimulus intensity was fixed and subjects reported both their choice
and their confidence. The average coherence used in the experiment
was 12.03% (±2.64). Subjects received feedback during the adaptive
staircase procedure to speed up learning and increase motivation, but
not during the confidence task and not in the scanner. Otherwise,
brain signals related to explicit feedback would be difficult to separate
from confidence-related brain signals. During the acquisition of the
anatomical image, but prior to functional scanning, the coherence
threshold was determined again using the QUEST procedure and
when necessary adapted slightly to account for differences between ex-
perimental sessions. Importantly, motion coherence was then fixed
throughout all functional runs from each subject, eliminating any
trial-to-trial variations in the strength of the physical stimulus.

Post-Experimental Sessions
After the main experiment, all subjects took part in a functional locali-
zer run to locate motion-sensitive region MT+/V5 in each individual
subject (Tootell et al. 1995). Seven of the subjects completed another
144 trials each outside the scanner, now while using a video-based eye
tracker (sampling rate: 250 Hz, Cambridge Research Systems). These 7
subjects were able to maintain central fixation, each of them with a
maximum of 2 saccades exceeding 1.5 dva during presentation of the
RDM stimuli.

Behavioral Data Analysis
Behavioral data of subjects were analyzed for accuracy, response time,
and confidence. For subsequent fMRI analyses, the continuous scale of
confidence ratings was divided into 3 confidence bins. Confidence bins
were created by separating the confidence ratings of all trials of each
individual subject at the tertiles, that is, the 33.3 and the 66.6 percen-
tiles. We call these confidence bins “low,” “medium,” and “high confi-
dence.” A comparison of binned confidence with continuous
confidence ratings—where possible—yielded very similar results to
the use of continuous confidence judgments.

MRI Data Acquisition
All scanning was performed using a 3.0 Tesla TIM Trio MRI (Siemens)
and a 12-channel head coil. An anatomical scan was acquired for inter-
subject normalization and mapping of functional to reference struc-
tural images (T1-weighted MPRAGE volume, TE: 2.52 ms, TR: 1900
ms, flip angle: 9°, FOV: 256 mm, matrix size: 256 × 256, slice thickness:
1 mm, 192 slices). In addition, 2247 functional volumes were acquired
per subject (T2*-weighted gradient-echo echo-planar images, TE: 30
ms, TR: 2000 ms, flip angle: 78°, FOV: 192 mm, matrix size: 64 × 64,
in-plane voxel size: 3 × 3 mm, slice thickness: 3 mm, gap: 0.3 mm, 33
slices, descending sequence), corresponding to the experimental runs
and the functional localizer. The first 2 functional volumes were auto-
matically discarded in each run to allow for T1 equilibrium effect.

MRI Data Preprocessing and Analysis Streams
MRI data preprocessing and general linear model (GLM)-based statis-
tical analyses were performed using SPM8 (SPM8, Wellcome Trust

Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). Using
the structural images of all subjects, a template structural reference
image was created using DARTEL (Ashburner 2007). For comparability
with other studies, this template was brought to MNI space using affine
transformation, and the transformation matrices of each subject were
saved. Three analysis streams were carried out on the functional
images: the standard mass-univariate approach in fMRI data analysis, a
multivariate searchlight-based classification method, and a multivariate
searchlight-based regression method. We will refer to these steps as
the “univariate analysis,” the “multivariate classification analysis,” and
the “multivariate regression analysis,” respectively. In the univariate
analysis, we were interested to find brain regions in which the BOLD
signal amplitude co-varied with confidence, independent of the direc-
tion of the moving dots. In the multivariate classification analysis, we
sought to identify brain regions that represented the decision of the
subject independent of the motion direction of the stimulus. Finally, in
the multivariate regression analysis, we were looking for brain regions
where patterns of brain activity predicted the subject’s decision and
their associated confidence. In all three analyses, functional images of
each subject were first spatially realigned and slice-timing corrected.
For the univariate analysis, the images were then spatially normalized
using the abovementioned transformation matrix and smoothed with a
Gaussian kernel (6 mm FWHM). For both multivariate analyses, func-
tional data were not spatially warped or smoothed.

Confidence: Mass-Univariate fMRI Data Analysis
A GLMwith 10 regressors per run was used to estimate BOLD response
amplitudes in each voxel separately. Two regressors modeled the
BOLD response related to perceptual decision-making. The first was a
stimulation regressor that consisted of a boxcar function with onsets at
RDM stimulus onset and duration of 2 s, convolved with a canonical
hemodynamic response function (HRF). This duration was the time
from RDM stimulus onset to the onset of the response-mapping screen.
This regressor reflected common neural responses to all stimulation
conditions. The second regressor was a parametric modulator that re-
flected the linear increase or decrease in BOLD signal across different
confidence levels. To this end, we split subjects’ confidence ratings
into 3 different bins. Although the latter was not a methodological re-
quirement for the mass-univariate analysis, it was necessary for the
multivariate regression analysis (see below). We chose to bin the trials
by confidence in both analysis approaches for consistency.

In addition to these 2 regressors, missed trials were modeled in a
separate third regressor convolved with an HRF, as well as 6 additional
head motion regressors and a constant term. To correct for low-
frequency drifts, a 1/128-Hz high-pass filter was applied to the data.
Across all runs, the model contained 50 regressors. Using the paramet-
ric regressor, we separately tested for positive or negative linear rela-
tionships between the BOLD signal amplitude and the confidence of
the subject across all experimental runs. The resulting contrast images
were submitted to two group-level t-tests, one for a positive and one
for a negative relationship. The statistical cutoff was set to P < 0.0001,
corrected family-wise for cluster size at P < 0.05.

Since response time correlated with confidence, we were interested
to see which brain regions exhibited confidence-related responses
after accounting for response time. For this, we repeated the same ana-
lysis as mentioned above but used response time as the first and confi-
dence as the second parametric regressor in the analysis. We
orthogonalized confidence with respect to response time, that is, the
confidence regressor could only explain additional variance that was
not already explained by response time.

Searchlight-Based Multivariate Classification
Analysis: Binary Choices
In a first step, we delineated brain regions in which activity reflected
the subjects’ choices. To this end, we classified choices based on
brain signals, separately for both directions of motion, similar to
the computation of choice probabilities (Britten et al. 1996). Since
motion coherence was kept constant, this eliminates regions where
signals are selective to physical motion direction alone and are not
linked to trial-by-trial fluctuations in choices, which would be
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required for a DV. Please note that this post hoc separation neither
affects the representation of the stimulus-related probability density
functions (Fig. 1A) nor the DV. Please also note that this contrast
could alternatively be explained by correctness which we addressed
in additional control analyses (see Results and Supplementary Ana-
lyses). We could then in a second step limit our search for the DV (see
below) to those brain regions that exhibit choice-related activity not
confounded by motion direction. Ideally, the representation of the
DV would be directly assessed in one step, separately for each direc-
tion of motion. However, sorting trials based on both motion direc-
tion and confidence would lead to an insufficient number of trials for
multivariate analyses.

Prior to decoding, we first ran a GLM analysis in which we modeled
the subject’s choices separately for both directions of motion (“motion
up, choice up,” “motion up, choice down,” “motion down, choice up,”
and “motion down, choice down”). As regressors of no interest, we
additionally modeled missed trials in 1 regressor, movement in 6 re-
gressors, and added a baseline regressor, leading to 12 regressors per
run. Next, we used the parameter estimates of the GLM reflecting the
choices of the subject in two separate searchlight classification analyses
(Kriegeskorte et al. 2006; Haynes et al. 2007), one for each stimulus
motion direction. This was performed within each subject, using a
leave-one-run-out cross-validation scheme. All multivariate analyses
were carried out with The Decoding Toolbox (Görgen et al. 2012) and
other in-house software.

For the searchlight classification, a sphere of voxels was selected
around a given voxel with a radius of 10 mm (139 voxels). From these
voxels, the GLM parameter estimates were extracted, separately for all
5 runs and for the 2 regressors reflecting the two choices for only one
of the motion directions (e.g., “motion up, choice up” and “motion up,
choice down”). These served as 10 pattern vectors that were used for
multivariate pattern classification of choices. Then, we used a linear
support vector classification model in the implementation of LIBSVM
(Chang and Lin 2011), with a standard cost value of c = 1. We assigned
each vector a label corresponding to the choice of the subject (“choice
up” vs. “choice down”). The pattern vectors of all but one run were
then used to train a support vector machine (SVM) to predict the cat-
egories of both left-out patterns in each run. After training, we vali-
dated the model by comparing the true labels of the left-out patterns
with the labels predicted from the model. We repeated this train-test
approach iteratively for each run and calculated a mean cross-validated
accuracy across all runs for this searchlight. The center voxel of the
searchlight sphere was assigned this accuracy, and the whole search-
light procedure was repeated for all voxels in the brain. This generated
a continuous map of mean cross-validated accuracies for each subject,
representing the distributed information (within the extent of the
searchlight) about the choice of the subject for one direction of
motion. This searchlight analysis was then repeated for the other direc-
tion of motion (in our example “motion down, choice up” vs. “motion
down, choice down”). Both maps of each subject were averaged, and
this combined map was spatially transformed to MNI space and
smoothed for group-level analyses. The chance-level accuracy for clas-
sification was set to 50%, because classification was based on an equal
number of regressors for both categories. We were interested to find
searchlight voxels where across the group the mean classification ac-
curacy of choices was significantly above chance. For this, we sub-
jected all accuracy maps to a group-level t-test (P-cutoff < 0.0001,
corrected family-wise for cluster size at P < 0.05).

Please note that for classification with a total of 10 patterns, each
cross-validation iteration involves only 4 training samples per class.
This is a comparably small number for supervised classification, and
one might be worried that this could compromise the reliability of the
present results. However, the fact that run-wise beta estimates are
more reliable than single-trial beta estimates should cancel the effect of
small training sample size, at least for classifiers such as SVMs, which
make little or no use of the variability of estimates. In practice, the ap-
proach can lead to higher accuracies (Ku et al. 2008), slightly improved
power (Allefeld and Haynes 2014) and is computationally much less
demanding than trial-wise classification. This makes the approach a
useful method for inferential purposes in fMRI decoding studies (Pol-
drack et al. 2011, p. 164), which has successfully been applied in a

number of previous group studies (e.g., Haynes et al. 2007; Kahnt et al.
2010; Christophel et al. 2012; Hebart et al. 2012).

Searchlight-Based Multivariate Regression Analysis:
Continuous Decision Variable
In order to investigate which brain regions changed their patterns of ac-
tivity depending on the confidence of the subject, we employed a multi-
variate regression analysis. The decision value is a theoretical variable
that cannot be directly observed, so we operationalized it in accordance
with signal detection theory. This theory postulates that, on each trial,
the subject’s confidence rating reflects the absolute distance of an internal
decision variable from a criterion, and the subject’s binary choice reflects
the sign of that difference (Fig. 1, Green and Swets 1966; Macmillan and
Creelman 2005). Under this assumption, a proxy of the DV (more specif-
ically: of the difference between the DV and the criterion) on each trial
can be constructed from the subject’s behavioral reports, as follows: the
binary choice (coded as −1 or 1 for “up” and “down,” respectively) multi-
plied with the binned confidence rating (here coded as 0.5, 1.5, and 2.5
for equidistant labels). Binning the trials in 3 confidence levels was ne-
cessary to achieve sufficient statistical power; not binning by confidence
would have yielded too few repetitions of each particular confidence
rating across the experiment. For simplicity, we will refer to the resulting
variable as “decision variable” in the following. Please note that the
multivariate regression analysis does not depend on the criterion used by
the subjects: in terms of detection theory, the criterion represents only a
constant added to each of the labels used in the regression analysis,
which is not used by the SVM and would thus leave the results of this
analysis unchanged (see also Formula [3] in Fig. 1D).

We searched for brain regions that exhibited a linear relationship
between local patterns of brain activity and the DV. For that purpose,
we first ran a GLM analysis in which we modeled the 3 DVs separately
for the 2 choices (up/down). This led to 6 regressors per run. As in the
univariate analysis missed trials, motion regressors and a baseline re-
gressor were added to the model.

The parameter estimates of the GLM reflecting the DV were then
used for a searchlight regression analysis. This was performed similar to
the “multivariate classification analysis” above, using a leave-one-
run-out cross-validation approach within each subject (Kahnt et al.
2010) and a searchlight radius of 10 mm. First, we extracted the GLM
parameter estimates of all voxels within a sphere around a given voxel
for all 6 regressors reflecting the choices and associated confidence. This
resulted in 30 pattern vectors that entered our multivariate regression
analysis. Second, we used a linear support vector regression (SVR)
model in the implementation of LIBSVM (nu-SVR, Chang and Lin 2011),
with parameters nu = 0.5 and the cost value c = 1. Third, each vector was
assigned a label ranging in equal steps from −2.5 to 2.5, depending on
the DV (corresponding to the range from “choice down, high confi-
dence” to “choice up, high confidence”). An SVR was then trained on
the pattern vectors of all but one run to make continuous predictions
about the labels of the 6 pattern samples of the left-out run. Fourth, we
obtained the predictive accuracy as the correlation between the true
labels of the left-out samples and the labels predicted from the regres-
sion model. This train-test approach yielded one correlation coefficient
per run that was subsequently Fisher-z-transformed and averaged across
runs. This mean Fisher-z-transformed correlation coefficient served as a
measure of cross-validation performance, with higher positive values re-
flecting more DV-related information in the patterns of brain activity.
The center voxel of the sphere was assigned this z-transformed correl-
ation coefficient. This searchlight procedure was repeated for all voxels
throughout the brain. This generated a continuous map of mean cross-
validated correlation coefficients for each subject, which represents the
locally distributed information that could be extracted from pattern of
brain activity about the DV. The map of each subject was then spatially
transformed to MNI space and smoothed for group-level analyses. These
results were further masked by regions that were shown to carry
choice-related information, controlled for motion direction (see above).
We were interested to find searchlight voxels where the mean Fisher
z-transformed correlation coefficient was larger than 0. For this, we sub-
jected all correlation maps to a group-level t-test (P-cutoff < 0.0001, cor-
rected family-wise for cluster size at P < 0.05).
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Multivariate Connectivity: Predicting Confidence Signals in One
Brain Region from Decision Variable Signals in another Region
Finally, we tested for more direct links between the neural representa-
tion of confidence signals and DVs. The idea was to see whether there
is any evidence that the neural confidence signal in one area A might
be computed from a neural DV in another area B. If that were the case,
one would expect the across-run variation in DV signals in B to result
in a corresponding across-run variation in confidence signals in
A. Figure 3 illustrates how the transformation would take place. To an-
ticipate the results of the “univariate analysis,” we found a signal in bi-
lateral ventral striatum that reflected confidence independent of the
choice of the subject (the same result was found using a multivariate
version of this analysis, see Results and Supplementary Fig. 2). The fol-
lowing analysis assessed whether it is possible to explain run-wise
changes in confidence representations in this ventral striatal region by
run-wise changes in DV coding in any other region. As candidate seed
regions, we selected the 12 regions that were identified in the multi-
variate regression analysis reflecting the DV (see Fig. 5B and Table 2).

We selected a sphere of voxels around each region’s peak (radius
10 mm), providing us with one searchlight per region. The peaks were
defined for each subject by inverting the warping carried out by the
DARTEL procedure for each subject. From each seed searchlight, we
looked up the DV predicted from the multivariate regression analysis,
providing us with 6 predicted DVs per run. Next, we transformed these
predicted DVs to predicted confidence values according to the
assumed relationship between the DV and confidence (Fig. 1C): for
each run, we removed the mean across all labels (to compensate for po-
tential offsets) and multiplied the labels with the vector [−1 −1 −1 +1
+1 +1], which represented the sign of the choices associated with each
predicted label (Fig. 1B; please note that a simple rectification of labels
would distort the expected systematic deviations). To conduct the ana-
lysis of interdependence, these transformed values were correlated
with the values predicted from the “multivariate regression analysis” of
confidence in the ventral striatum, separately for each run. These cor-
relation coefficients were Fisher-z-transformed and averaged across
runs. The whole process was repeated for each seed region separately.
Please note that the results of the univariate analysis and the multivari-
ate regression analysis of confidence are equivalent, but showing this
direct link is much simpler between two multivariate regression ana-
lyses: first, the same number of voxels are used when comparing multi-
variate analyses, making the results more equivalent in terms of
informational content. Second, it would be difficult to formulate this

kind of link between a multivariate decoding model and a univariate
encoding model (Naselaris et al. 2011), but this link is much simpler
for two multivariate decoding models.

Since we selected regions that exhibited a good fit with the DV, the
expected correlation between these regions and the ventral striatum is
above 0 even in the case of no run-wise interdependence. For this
reason, we implemented a permutation test: for each subject, we re-
peated the above-mentioned connectivity analysis, but this time per-
muted the runs of the predicted labels. This step should destroy
systematic deviations of predicted labels that are specific to each run,
but it preserves correlations that may be present in the average across
runs. There were 120 possible combinations per subject. For group
analysis, we picked one of these 120 combinations per subject and
averaged them (yielding a total of 12018 = 2.66 × 1037 possible combi-
nations). This process was repeated 106 times to generate a distribution
of correlation coefficients for each region of interest. Significance was
determined by permutations that exceeded the non-permuted runs less
than 0.0042 times (reflecting Bonferroni correction for P < 0.05 across
12 regions).

Results

Behavior
Results are reported with the 95% confidence interval in brack-
ets, unless denoted explicitly. Subjects reported both their choice
and confidence on 95.51% (±1.29) of trials, and only trials with
both reports were used for later analyses. In agreement with the
individually adjusted coherence levels, participants were correct
on 75.06% (±2.19) of trials, with no differences between choices
for upward or downward motion (Fig. 2B, Mup: 74.77%, Mdown:
76.26%, t(17) =−0.99, P = 0.1685). The tertiles on the confidence
scale lay at 41.05% (±5.79) and 66.58% (±4.88), indicating that
subjects were sampling confidence quite evenly (for a histogram
of raw confidence responses, see Supplementary Fig. 1).
Although there was a time gap of at least 1 s between stimulus
offset and responses—which should be sufficient for the
read-out of potential motion-related information (Roitman
and Shadlen 2002) from a visual buffer—response time was

Figure 3. Rationale of the multivariate connectivity analysis. This analysis investigates similarities in the representation of the DV in region A and the representation of confidence in
region B, which are specific to each run. In a first step, in region A, the predicted DV of each run (which resulted from the “multivariate regression analysis,” see Materials and
Methods section) is multiplied with the behavioral choices related to each of these predicted labels (see Fig. 1D), creating a transformed predicted DV. In a second step, the
transformed predicted DV of each run is correlated with the predicted confidence of the same run. The correlation between directly decoded confidence and DV-based confidence
across runs is expected to be non-zero even if there is no interdependence between the 2 regions. For that reason, it is important to compute a distribution of baseline correlation
levels in the absence of interaction. All possible permutations of pairs of runs (e.g., run 1 and run n) are calculated, and the distribution of correlations is obtained, which is used as a
basis for a permutation test.
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correlated negatively with accuracy (mean Fisher z =−0.073,
P = 0.001) and confidence (mean Fisher z =−0.248, P < 0.001).

A central assumption underlying our approach for recon-
structing the DV from binary choices and confidence ratings
was the existence of a close link between decision confidence
and accuracy. Such a link has commonly been observed in
analogous perceptual choice tasks (Peirce and Jastrow 1884;
Green and Swets 1966; Vickers 1979; Baranski and Petrusic
1998; Macmillan and Creelman 2005). To establish this link for
the present data, we calculated the accuracy for each level of
confidence on a continuous range, using 5% of all trials for
each bin. Accuracy increased monotonically with confidence,
approaching chance at lowest levels of confidence, but not
ceiling at highest confidence levels (Fig. 2C). After binning
confidence at the tertiles, the average performance was 61.04%
(±2.96), 76.06% (±3.07), and 88.08% (±2.86) correct for the 3
confidence bins, respectively (dashed horizontal lines in
Fig. 2C). These results are consistent with the notion that confi-
dence may act as a direct function of the DV. It is possible that
other cognitive variables also contributed to confidence judg-
ments (Fleming et al. 2012), but the linear relationship
between performance and confidence suggests no systematic
deviations from this relationship due to such variables (see
Discussion for a more detailed treatment of this topic).

Any relationship we find between the neural representation
of DV and confidence could possibly stem from a positive
behavioral correlation of DV and general confidence. Such a
bias would only be possible if there was a correlation of per-
formance with one choice (e.g., motion up), but not the other.
To test for this, we applied equation (3) from Figure 1D to each
confidence bin to derive DVs for each subject. The correlation
of DV and confidence was not significant (mean Fisher z:
0.002, t(17) = 0.118, P = 0.4537), demonstrating that the com-
parison of both variables is not biased. Similarly, we correlated
the binned DV and response time and found no linear relation-
ship between the two (mean Fisher z: −0.059, t(17) = 1.237, P =
0.2331).

Neural Correlates of Perceptual Confidence
Whereas several brain regions exhibited decreases in BOLD
signal with increasing confidence (Fig. 4 and Table 1), only
one region displayed a positive relationship with confidence:
the ventral striatum around the nucleus accumbens. Only at a
much lower threshold, a small cluster in medial orbitofrontal
cortex was apparent (P < 0.01 uncorrected); however, this
cluster did not survive any correction for multiple com-
parisons; for that reason, we do not discuss it further. For illus-
trative purposes, we also computed a multivariate regression
analysis (see Materials and Methods) in which we decoded
choice confidence, with very similar results albeit at a higher
level of significance and thus a larger spatial extent (Supple-
mentary Analyses and Supplementary Fig. 2). However, the
directionality of the BOLD signal cannot be interpreted in
multivariate pattern analysis which is why we focus on the
results from the mass-univariate analysis (Jimura and Poldrack
2012).

Since response time correlated with confidence, we were in-
terested to see whether the relationship between confidence and
the BOLD signal was mediated by response time. We repeated
the same mass-univariate analysis as mentioned above but first
removed the variance in BOLD signal amplitude explained by re-
sponse time. The positive relationship between confidence and
BOLD signal amplitude remained, whereas many of the regions
previously displaying a negative relationship no longer survived
the statistical threshold (see Supplementary Table 1, for all
related results). At a more lenient threshold, the results were still
present, but in contrast to the ventral striatum, all effects were
strongly reduced by the inclusion of response time (interaction
with ventral striatum: mean z = 2.87, P = 0.002). These analyses
indicate that a significant portion of most negative correlations
with confidence could be related to other cognitive variables
leading to variations in response time, such as top-down atten-
tion, cognitive control (Miller and Cohen 2001; Corbetta and
Shulman 2002; Botvinick et al. 2004). In this study, we focused
on regions displaying a “positive” relationship between

Figure 4. Brain regions exhibiting linear increases and decreases in the BOLD signal in relationship to confidence. A positive slope reflects a positive correlation of confidence and
BOLD signal, whereas a negative slope corresponds to a negative correlation.
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confidence and BOLD signal amplitude because these could be
more unambiguously treated as candidates for a confidence
signal (see also Discussion).

Multivariate Searchlight Regression: Neural Correlates
of Choices and of the Decision Variable
Having identified a subcortical region carrying a general confi-
dence signal, we next searched for brain regions carrying re-
presentations of choices and of the DV. We restricted the
search for the DV to regions encoding choices while control-
ling for motion direction to ensure that our results of the DV
truly reflected decision-related information rather than the
motion direction presented on the screen. Choice-related infor-
mation was found mostly in prefrontal and posterior parietal
regions (Fig. 5A), with a mean accuracy across all voxels of
56.83% (± 1.59 SD). Additional analyses confirmed that these
regions were choice-related rather than only reflecting the
correctness of the subjects (see Supplementary Analyses for
additional control analyses testing for further alternative expla-
nations than choice-related information). Within these regions,
we searched for the representation of the DV.

Information about the DV was found in activity patterns in
several brain regions, most prominently the left middle frontal
gyrus, the left posterior parietal cortex including the precuneus,
the right ventrolateral prefrontal cortex encompassing inferior
frontal cortex and the anterior insula, and the left middle

Table 1
Brain regions where activity is related to confidence

Region X Y Z Z-value Cluster size

Positive parametric effect
Left ventral striatum −9 9 −3 4.42 17
Right ventral striatum 9 9 −3 4.59 15

Negative parametric effect
Supplementary motor area/ACC −9 15 54 5.27 436
Right anterior insula 33 27 3 4.99 103
Right frontal eye field 45 6 45 5.36 89
Right inferior frontal gyrus 51 18 21 5.19 88
Left frontal eye field −45 6 48 4.60 70
Left inferior frontal gyrus −45 21 12 4.19 59
Left superior parietal lobule −21 −54 54 4.38 29
Right middle temporal gyrus 63 −48 0 3.95 20
Left anterior insula −39 21 −3 3.94 17
Right superior parietal lobule 30 −60 60 4.00 16

Note: A complete list of brain regions with parametric increases and decreases in brain activity in
relationship to confidence. The coordinates and z-values refer to the peak within each cluster.
Results are reported at P< 0.0001, corrected family-wise for cluster size at P< 0.05.

Figure 5. (A) Brain regions encoding the choice independent of the direction of motion of dots (Britten et al. 1996). (B) Limited to these regions signals representing the DV as
defined by the choices of subjects and the associated confidence.
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temporal gyrus (Fig. 5B, for a complete list, see Table 2, for un-
masked results, see Supplementary Fig. 3). It should be noted
that due to the response-mapping cue, choices were decorre-
lated from motor responses: therefore, the DV was represented
independent of motor responses (Hebart et al. 2012). Also the
criterion that possibly varied slightly between the highly trained
subjects could not affect these results, because it represents only
a constant that would leave the results of our multivariate ana-
lyses unchanged (see Formula [3] in Fig. 1D). Since response
time showed no linear relationship with the DV, we did not run

a similar control analysis as was done for perceptual confidence
(see previous section).

Interdependence between Neural Representation
of Decision Variable and Confidence
We investigated which of the brain regions informative about
the DV (Fig. 5) predicted the confidence-associated signal in
the ventral striatum (Fig. 4). Only the activity patterns in the
right ventrolateral prefrontal cortex exhibited the specific cor-
relation with the activity patterns in the ventral striatum (see
Fig. 6, for raw Fisher z-values, see Supplementary Fig. 4) as ex-
pected for the transformation from DV to confidence (Fig. 1C,
D). Please note that this analysis accounted for across-run
average correlations between DV and confidence.

It is possible that a common input drove both signals in
vlPFC and the ventral striatum, rather than these two regions
interacting directly. In this scenario, sensory evidence from
motion-sensitive cortex should feed into vlPFC, and the same
sensory evidence would be transformed to confidence in the
ventral striatum. To test for this, we took the signals from
motion-sensitive area MT+ and ran the same multivariate con-
nectivity analysis as mentioned above, but this time between
MT+ and vlPFC as well as between MT+ and the ventral stri-
atum. According to this view, the predicted labels in MT+
would correlate with the predicted labels in vlPFC, and the
transformed predicted labels in MT+ would correlate with the
predicted labels of confidence in the ventral striatum. We
found a correlation between MT+ and vlPFC (Fisher z = 0.18,
permutation P = 0.0100), but not between MT+ and the ventral
striatum (Fisher z =−0.04, permutation P = 0.5793). This result
is in line with the idea that a DV in vlPFC is constructed from
signals in motion-sensitive cortex and confirms the suggestion
that this DV is transformed to a confidence signal in the ventral
striatum, rather than both signals being mediated by sensory
evidence in MT+.

Table 2
Brain regions informative about the DV

Region X Y Z Mean
fisher z

Z-value Cluster
size

Left middle frontal gyrus −36 18 36 0.37 4.82 964
Left superior frontal gyrus −18 60 9 0.32 4.51
Superior medial frontal lobe −12 36 36 0.31 4.47
Precuneus −6 −63 42 0.39 5.27 454
Left superior parietal lobe −27 −69 48 0.37 4.70
Left inferior parietal lobe −42 −51 51 0.43 4.64
Right ventrolateral prefronal cortex
(inferior frontal gyrus /right anterior
insula)

33 36 3 0.32 4.87 119

Left Middle temporal gyrus (posterior) −51 −72 21 0.31 5.34 79
Right inferior parietal lobe 45 −45 57 0.29 4.33 71
Right middle frontal gyrus 33 3 54 0.39 4.91 67
Left inferior frontal gyrus /left
orbitofrontal gyrus

−18 33 −9 0.30 4.39 60

Left middle temporal gyrus (central) −51 −27 −9 0.38 4.47 45

Note: Brain regions carrying information about the DV reconstructed from choices and confidence
ratings. Mean Fisher z-values reflect the z-transformed size of the correlation between predicted
and true values in the multivariate regression analysis (see Materials and Methods), averaged
across subjects. The coordinates, mean Fisher z-values, and statistical z-values of the normal
distribution refer to the peak within each cluster. For clusters spanning several brain regions,
multiple peaks are shown. Results are reported at P< 0.0001, corrected family-wise for cluster
size at P< 0.05.

Figure 6. Normalized multivariate connectivity between several seed regions and the ventral striatum as target region. Normalization was carried out by dividing the Fisher z-value
by the significance cutoff of the permutation test, but preserving the sign. A value exceeding 1 (solid line) would be deemed significant at the Bonferroni corrected level. MFG,
middle frontal gyrus; SFG, superior frontal gyrus; sMFL, superior medial frontal lobe; PC, precuneus; SPL, superior parietal lobe; IPL, inferior parietal lobe; vlPFC, ventrolateral
prefrontal cortex; pMTG, posterior middle temporal gyrus; OFG, orbitofrontal gyrus; cMTG, central middle temporal gyrus.

Cerebral Cortex 9

 at U
niversiteit van A

m
sterdam

 on Septem
ber 12, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu181/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu181/-/DC1
http://cercor.oxfordjournals.org/


Although our behavioral results showed no significant cor-
relation between DV and confidence, a possible concern is that
a brain region could be biased to selectively respond only to
one choice (e.g., “motion up”) and not the other. In the same
manner as the behavioral results, this could explain a positive
correlation between DV and confidence. To test for this possi-
bility, we looked up the labels predicted by the SVR for the DV,
transformed them according to the assumed relationship
between DV and confidence (Fig. 1C), and correlated these
transformed labels with those that had been predicted for con-
fidence in the same region. This analysis revealed no signifi-
cant positive correlation in vlPFC (mean Fisher z: 0.09,
t(17) = 0.8470, P = 0.4088). Finally, to test whether such a bias
was present anywhere in the brain, we repeated the same pro-
cedure using a searchlight approach and the same threshold
applied to all whole-brain analyses. The analysis revealed no
significant voxels, demonstrating that this alternative cannot
explain the results of the multivariate connectivity analysis.

Discussion

It has long been postulated that human observers use an in-
ternal DV reflecting the amount of evidence in favor of one
perceptual interpretation over another for determining their
binary choice and their absolute level of confidence in that
choice (Peirce and Jastrow 1884; Vickers 1979; Baranski and
Petrusic 1998). The former requires a comparison of a continu-
ous DV with a decision criterion, whereas the latter requires a
transformation of the DV to the estimation of the probability of
being correct, independent of the type of choice. Here, we
demonstrate that activity in the ventral striatum increased with
the level of confidence and that activity patterns in a wide
network of cortical brain regions reflected the perceptual DV
that we reconstructed from choices and confidence ratings ac-
cording to signal detection theory. The DV-related activity pat-
terns specifically in the right ventrolateral prefrontal cortex
co-varied with the confidence-related activity patterns in the
ventral striatum, suggesting a mechanistic link for the trans-
formation of neural representations of the DV into neural re-
presentations of confidence.

Our findings complement recent studies on perceptual con-
fidence in animals. An estimate of confidence that depended
on the choice was found in macaque lateral intraparietal area
(Kiani and Shadlen 2009), and single unit activity in rat orbito-
frontal cortex reflected a more general perceptual confidence
signal (Kepecs et al. 2008), which has also been suggested for
macaque striatum (Ding and Gold 2012). We extend these find-
ings by demonstrating a specific relationship between these
two types of decision-related neural signals. Specifically, our
results suggest that the transformation of DV to confidence
entails a non-selective pooling across responses of choice-
selective populations of prefrontal neurons and that this
pooling takes place in the ventral striatum: the bigger the activ-
ity levels of “any” of the choice-selective prefrontal popula-
tions, the bigger the response of the striatal neurons encoding
choice-independent confidence.

For identifying the DV, we were careful to focus only on
brain regions that encoded choices while controlling for the
stimulus shown (Li et al. 2009; Hebart et al. 2012). In addition,
we kept sensory evidence constant for each participant to
ensure that we would not confuse representations of the stimu-
lus with representations of the DV. Activity patterns in a

number of predominantly frontal and parietal brain regions
were consistent with a representation of the DV (Kim and
Shadlen 1999; Gold and Shadlen 2000; Shadlen and Newsome
2001; Roitman and Shadlen 2002). The ventrolateral prefrontal
cortex, exhibiting the specific covariation with the ventral stri-
atum reported in our study, has previously been shown to
encode perceptual choices in studies using multivariate
pattern analysis (Pessoa and Padmala 2007; Li et al. 2009) and
shows a direct anatomical connection to regions of the basal
ganglia (Aron et al. 2007). Outside of the signal detection
theory framework, these patterns of activity can reflect the
amount of sensory evidence available to the subject, the accu-
mulated sensory evidence, or a high-level monitoring signal
keeping track of the accumulated evidence. Different or add-
itional brain regions may be involved in encoding this DVs
when choices are not by design decoupled from motor plans
as in the present study (Bennur and Gold 2011; Hebart et al.
2012; O’Connell et al. 2012; de Lange et al. 2013; Filimon et al.
2013).

The ventral striatum exhibited a robust positive correlation
with confidence and was the primary candidate region identi-
fied in our study for encoding perceptual confidence. The
ventral striatum seems to play a general role in encoding deci-
sion certainty (Preuschoff et al. 2006), reward prediction error
(O’Doherty et al. 2004), motivational salience (Zink et al.
2004), and motivation in general (Talmi et al. 2008). While
speculative, this signal could potentially correspond to the re-
warding feeling associated with being confident, which could
be used to reinforce behaving in a similar manner again (e.g.,
paying attention to the stimulus). Perceptual confidence
signals encoded in this region could be used to evaluate
present and fine-tune future choices (Ding and Gold 2012)
even in the absence of feedback as was the case in our study,
which is consistent with recent findings demonstrating a confi-
dence prediction error signal in the ventral striatum using a
similar perceptual discrimination task (Daniel and Pollmann
2012). Expanding on our findings, we have recently conducted
a perceptual learning study in which we showed that subjects
whose striatal responses are modulated more strongly by confi-
dence exhibit better learning, even in the absence of external
feedback (unpublished data). In that respect, the internal mon-
itoring of the quality of evidence and this self-generated feed-
back may also participate in more general forms of learning
and would be particularly useful in contexts where external
feedback is not available. In order for a confidence signal to
affect other neuronal responses or behavior irrespective of the
choice, it requires an explicit representation, rather than an im-
plicit representation in the form of an unsigned DV.

The ventral striatum is also anatomically closely connected
to the orbitofrontal cortex, and it has been reported in rats that
the latter region may also carry a general confidence signal
(Kepecs et al. 2008). The absence of an effect in orbitofrontal
cortex in our study may be due to one of the following factors:
possibly reduced or distorted fMRI signal due to air-tissue
boundaries in the nearby sinuses (Ojemann et al. 1997), the
spatial proximity of neuronal signals positively “and” negative-
ly correlated with confidence that cannot be resolved with the
spatial resolution of fMRI (Kepecs et al. 2008), or the encoding
of confidence as an outcome signal in the OFC only when ex-
plicit feedback is provided (Mainen and Kepecs 2009).

The brain might also compute signals encoding that the ex-
pected outcome of the behavior is negative, that is reflecting
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uncertainty about the previous choice (Bach and Dolan 2012).
Uncertainty has been investigated for both value-based (Hsu
et al. 2005; Huettel et al. 2005) and perceptual or categorical
decision-making (Fleck et al. 2006; Grinband et al. 2006;
Fleming et al. 2012). One study identified human brain
regions, in which activity correlated with confidence ratings
(Fleming et al. 2012); of those regions, the anterior cingulate
and the rostrolateral prefrontal cortex showed a negative cor-
relation of perceptual confidence and the BOLD response, in
line with a neural representation of perceptual uncertainty.
The regions in which activity correlated negatively with confi-
dence in our data are also involved in cognitive control and
top-down attention (Miller and Cohen 2001; Corbetta and
Shulman 2002; Botvinick et al. 2004). This might suggest that
uncertainty leads to brain activations signaling the need to
adapt future behavior. At the same time, we showed that activ-
ity in many of these regions showing a negative relationship
with confidence might at least in part be explained by varia-
tions in response time. This indicates that either some of these
brain responses were not directly related to confidence or that
the effects of confidence and response time could not be distin-
guished, which makes it difficult if not impossible to uniquely
attribute them to confidence. Whether these signals directly
reflect representations of uncertainty, top-down control pro-
cesses that follow from uncertainty, or other processes that
contribute to confidence is a prospect for future studies. Future
studies might also elucidate whether the relationship between
DV and confidence signals can also be demonstrated between
DV and uncertainty signals.

We defined the DV as the amount of information available to
the observer in favor of a particular choice. This definition of
the DV differs slightly from other uses of this term where it is
equated with the temporal accumulation of evidence (e.g.,
Kiani and Shadlen 2009). The model derived from signal detec-
tion theory used here is agnostic to the temporal evolution of
this signal and is limited to the end product of this purported
accumulation process. In addition, we did not operationalize
the DV independent of confidence based on neuronal re-
sponse profiles, as was done for example in Kiani and Shadlen
(2009). However, it was not the goal of the present study to
confirm signal detection theory as a model that can link
choices, the DV and confidence. Rather, we merely used this
model to reconstruct the hypothetical DV from choices and
confidence and link the representation of this variable to the
representation of confidence. In that way, the reconstructed
DV in this study could alternatively be described as “signed
confidence,” referring to the amount of confidence associated
with a given choice.

While the framework that guided our study is well sup-
ported by a wealth of behavioral and neuronal data, we do not
claim that signal detection theory is the only model to explain
the relationship between the DV and confidence (Zylberberg
et al. 2012). In addition, our findings do not imply that the DV
is the “only” factor that governs confidence. Indeed, it has
been reported that objective decision performance and sub-
jective judgments can (at least partially) be decoupled by
means of additional processes, which may or may not depend
directly on the evidence used for the decision (Lau and Pas-
singham 2006; Persaud et al. 2007; Hesselmann et al. 2011).
Additional evidence-dependent processes after the choice
(Resulaj et al. 2009) that could affect the confidence level
(Pleskac and Busemeyer 2010) are unlikely, because our

interrogation task entailed an imposed 1-s delay between
stimulus offset and response prompt. Any additional sensory
processing would have been completed by the time of the
choice (Roitman and Shadlen 2002). However, “evidence-inde-
pendent” processes during and after the choice may have con-
tributed to the confidence ratings, and indeed the relationship
between performance and confidence in the present study was
not perfect (Fig. 2C). Such additional processes may not only
translate the DV into confidence judgments but encompass
additional dedicated decision-making mechanisms evaluating
the quantity and quality of evidence (Fleming and Dolan 2012;
Yeung and Summerfield 2012). However, a non-perfect rela-
tionship of behavioral performance and confidence could also
be explained by different sources of noise, for example, in the
transformation process of DV to confidence, or by a decay of
the DV in the time window between the choice and confidence
ratings. Such noise sources would only weaken the relation-
ship between decision performance and confidence ratings
but do not disagree with the suggested transformation process
of DV to confidence.

The approach employed in this study could be used to in-
vestigate related questions: To what degree do the neural
computations underlying perceptual confidence generalize to
other forms of confidence, such as categorical confidence
(Grinband et al. 2006), memory confidence (Henson et al.
2000) or value-based confidence (De Martino et al. 2013), and
to what degree do they differ (Baird et al. 2013)? The tem-
poral separation between the choice and confidence rating
could be varied, thus providing stronger variation in post-
decision time, which could be used to specifically target these
post-decisional processes. Finally, in a reaction time version
of the task, our approach could be generalized to incorporate
the influence of variability in response criteria on confidence
judgments (Ratcliff and Starns 2009; Pleskac and Busemeyer
2010). Targeting the relationship between the DV and confi-
dence as has been done in the present study can be seen as
an important step toward a more complete understanding of
the neuronal processes underlying human perceptual choice
behavior.

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford
journals.org/
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